期刊文献+

带非线性阻尼项的三维空间等熵欧拉方程组解的爆破

The Blow-up of Three-Dimensional Isentropic Euler Equations with Nonlinear Damping Term
下载PDF
导出
摘要 对某些初始数据较大的三维空间中带非线性阻尼项的欧拉方程组初值问题经典解的存在性进行研究.在经典解局部存在及具有有限传播速度的情况下,定义了三种不同泛函,均得到了其经典解在有限时间内必定发生爆破的结论. In this paper,the existence of classical solutions for the initial value problem of Euler equations with nonlinear damping term in three-dimensional space with large initial data is studied.In the case of local existence of classical solutions and finite propagation velocity,three different functionals are defined,and the conclusion that the classical solution must blow up in finite time is obtained.
作者 冉丽华 熊显萍 张朝霞 唐林浪 RAN Lihua;XIONG Xianping;ZHANG Chaoxia;TANG Linliang(School of Mathematical Science,Xingyi Normal University for Nationalites,Xingyi Guizhou 562400)
出处 《兴义民族师范学院学报》 2021年第5期105-111,共7页 Journal of Minzu Normal University of Xingyi
基金 贵州省教育厅2019年省级大学生创新创业训练计划项目“三维空间带阻尼的欧拉方程解的爆破”(黔教办高函[2019]43号,项目编号:20195201869)。
关键词 非线性阻尼 欧拉方程 爆破 泛函方法 nonlinear damping Euler equations blowup functional methods
  • 相关文献

参考文献6

二级参考文献27

  • 1ZHU Changjiang JIANG Mina.L^p-decay rates to nonlinear diffusion waves for p-system with nonlinear damping[J].Science China Mathematics,2006,49(6):721-739. 被引量:11
  • 2ZHU XUSHENG,WANG WEIKE.THE REGULAR SOLUTIONS OF THE ISENTROPIC EULER EQUATIONS WITH DEGENERATE LINEAR DAMPING[J].Chinese Annals of Mathematics,Series B,2005,26(4):583-598. 被引量:18
  • 3Wang W K,Yang T.The pointwise estimates of solutions for Euler equations with damping in multi-dimensions[J].Journal of Differential Equations,2001,173(2):410-450.
  • 4Thomas C,Sideris T.Wang D H.Long time behavior of solutions to the 3D compressible euler equations with damping[J].Communications in partical differential equations,2003,28(3):795-816.
  • 5Pan R H,Zhao K.The 3D compressible Euler equations with damping in a bounded domain[J].Journal of Differential Equations,2009,246(2):581-596.
  • 6Sideris T C.Formation of singularities in three dimensional compressible fluids[J].Comm Math Phys,1985,101(4):448-475.
  • 7Liu T P,Yang T.Compressible euler equations with vacuum[J].Journal of Differential Equations,1997,140(2):223-237.
  • 8Yang T.Some recent results on compressible flow with vacuum[J].Taiwan Residents Journal of Mathematics,2000,4(3):33-44.
  • 9Liang Z L.Blow up phenomena of the compressible Euler equations[J].J Math Appl,2010,370(3):506-510.
  • 10Zhu X S,Tu A H.Blow up of the axis-symmetric solutions for the IBVP of the isentropic Euler equations[J].Nonlinear Analysis:Theory Methods&Applications,2014,95(2):99-106.

共引文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部