期刊文献+

基于Kinect的地铁乘客不安全行为识别方法与实验 被引量:7

Kinect-based recognition method and experiments on unsafe behavior of subway passengers
下载PDF
导出
摘要 为解决地铁视频监控技术对乘客不安全行为只记录不识别且较少考虑识别精确度的问题,提出1种基于Kinect传感器的高效识别方法。以Pelvis为向量起点和动作活动高频关节为终点构建识别特征向量;运用余弦定理获得标准动作与测试动作关节的最大角度差序列;以最大角度差为动作特征量建立相似度计算模型,运用动态时间规整算法(DTW)将初始结果转换为动作相似度。以相连关节法为对照组开展对比实验,结果表明:前者在抽烟、挥拳、挥手呼救等行为识别的准确度分别为91.7%,86.9%,89.2%,平均比对照组高4%以上,显著提高了地铁乘客不安全行为的识别率,可为地铁智能安全管控提供理论与技术依据。 In order to solve the problem that the subway video surveillance technology only records but does not recognize the unsafe behavior of passengers and considers the recognition accuracy less,an efficient recognition method based on Kinect sensor was proposed.The characteristic vectors of recognition were constructed by taking Pelvis as the starting point of the vector and the high-frequency joints of the motive action as the end point,and the maximum angle difference sequence between the standard motion and the test motion joint was obtained through the law of cosines.A similarity calculation model with the maximum angle difference as the motion characteristic quantity was established,then the dynamic time warping algorithm(DTW)was used to convert the initial results into the motion similarity,and the comparative experiments were carried out with the connected joint method as the control group.The results showed that the accuracies of the former on behavior recognition such as smoking,punching,and calling for help were 91.7%,86.9%,and 89.2%,respectively,which were on average 4%higher than the control group.It significantly improves the recognition rate of the unsafe behaviors of subway passengers,and can provide theoretical and technical basis for the intelligent safety management and control of subway.
作者 卢颖 吕希凡 郭良杰 仇乐 路越茗 LU Ying;LYU Xifan;GUO Liangjie;QIU Le;LU Yueming(School of Resource & Environmental Engineering,Wuhan University of Science and Technology,Wuhan Hubei 430081,China;Faculty of Engineering,China University of Geosciences,Wuhan Hubei 430074,China)
出处 《中国安全生产科学技术》 CAS CSCD 北大核心 2021年第12期162-168,共7页 Journal of Safety Science and Technology
基金 国家自然科学基金项目(51874213) 湖北省自然科学基金青年项目(2018CFB186) 湖北省应急管理厅安全生产专项(KJZX201907011)。
关键词 不安全行为识别 特征矢量 关节角度 动态时间规整算法(DTW) 地铁乘客 unsafe behavior recognition characteristic vector joint angle dynamic time warping algorithm(DTW) subway passengers
  • 相关文献

参考文献12

二级参考文献88

  • 1夏鑫,何建民,刘嘉毅.定性比较分析的研究逻辑——兼论其对经济管理学研究的启示[J].财经研究,2014,40(10):97-107. 被引量:86
  • 2胡晓雁,梁晓辉,赵沁平.自动匹配虚拟人模型与运动数据[J].软件学报,2006,17(10):2181-2191. 被引量:9
  • 3谢林海,刘相滨.基于不变矩特征和神经网络的步态识别[J].微计算机信息,2007,23(19):279-281. 被引量:9
  • 4XIA L, CHEN C C, AGGARWAL J K. View invariant human action recognition using histograms of 3D joints[C]//Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Piscataway, NJ:IEEE, 2012:20-27.
  • 5YANG X, TIAN Y. Eigen-joints-based action recognition using naive-Bayes-nearest-neighbor[C]//Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Piscataway, NJ:IEEE, 2012:14-19.
  • 6LI W, ZHANG Z, LIU Z. Action recognition based on a bag of 3D points[C]//Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recognition Workshops. Piscataway, NJ:IEEE, 2010:9-14.
  • 7SHOTTON J, FITZGIBBON A, COOK M, et al. Real-time human pose recognition in parts from single depth images[C]//Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE, 2011:1297-1304.
  • 8SCHULDT C, LAPTEV I, CAPUTO B. Recognizing human actions:a local SVM approach[C]//Proceedings of the 17th IEEE International Conference on Pattern Recognition. Piscataway, NJ:IEEE, 2004, 3:32-36.
  • 9SUN J, WU X, YAN S, et al. Hierarchical spatio-temporal context modeling for action recognition[C]//Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE, 2009:2004-2011.
  • 10BOBICK A, DAVIS J. The recognition of human movement using temporal templates[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(3):257-267.

共引文献178

同被引文献90

引证文献7

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部