期刊文献+

单位球上散乱数据核正则化回归的误差分析 被引量:1

Error Analysis of Kernel Regularized Regression with Deterministic Spherical Scattered Data
下载PDF
导出
摘要 给出基于二次损失的单位球盖(单位球)上确定型散乱数据核正则化回归误差的上界估计,将学习误差估计转化为核函数积分的误差分析,借助于学习理论中的K-泛函与光滑模的等价性刻画了学习速度.研究结果表明学习速度由网格范数所控制. We investigate the error bounds of kernel regularized regression learning associated with deterministic data on the spherical cap(and the whole unit sphere) and the quadratic loss. We transform the learning error as the upper bound estimate for the numerical integration error and obtain the learning rates with the convergence rates of kernel-based quadrature. We express the learning rates with a modulus of smoothness which is equivalent to a K-functional in learning theory. The research results show that the learning rates are controlled by the mesh norm of the scattered data.
作者 李峻屹 盛宝怀 LI Junyi;SHENG Baohuai(Department of Information Technology,Shanxi Police College,Xi’an 710021,China;Department of Applied Statistics,Shaoxing University,Shaoxing 312000,China)
出处 《应用数学》 CSCD 北大核心 2022年第1期172-179,共8页 Mathematica Applicata
基金 Supported partially by the NSF (61877039) NSFC/RGC Joint Research Scheme of China (12061160462 and N-CityU102/20) NSF of Zhejiang Province (LY19F020013)。
关键词 数值积分公式 球盖 最差误差 二次损失函数 核正则化回归 学习速度 Number integration formula Spherical cap Worst-case error Quadratic function loss Kernel regularized regression Learning rate
  • 相关文献

参考文献1

二级参考文献25

  • 1Aronszajn N. Theory of reproducing kernels. Trans Amer Math Soc, 1950, 68:337 404.
  • 2Belkin M, Niyogi P, Sindwani V. Manifold regularization: A geometric framework for learning from examples. Com- puter Science Technical Report of University of Chicago (TR-2004-06), 2004.
  • 3Belkin M, Niyogi P. Semi-supervised learning on Riemannian manifolds. Machine Learning, 2004, 56:209 239.
  • 4Chen D R, Wu Q, Ying Y M, et al. Support vector machine soft margin classifiers: Error analysis. J Mach Learning Res, 2004, 5:1143-1175.
  • 5Cucker F, Smale S. On the mathematical foundations of learning. Bull Amer Math Soc, 2001, 39:1-49.
  • 6Dai F. Jackson-type inequality for doubling weights on the sphere. Constr Approx, 2006, 24:91-112.
  • 7Ditzian Z. A modulus of smoothness on the unit sphere. J Anal Math, 1999, 79:189-200.
  • 8Ditzian Z. Jackson-type inequality on the sphere. Acta Math Hungar, 2004, 102:1-35.
  • 9Freeden W, Gervens T, Schreiner M. Constructive Approximation on the Sphere. New York: Oxford University Press, 1998.
  • 10Hubbert S, Morton T M. A Duchon framework for the sphere. J Approx Theory, 2004, 129:28-57.

共引文献1

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部