期刊文献+

带分数阶边值条件的差分方程组的正解问题

Positive Solutions of Difference Equations with Fractional Boundary Value Conditions
下载PDF
导出
摘要 本文研究一类带分数阶边值条件的差分方程组边值问题.利用不等式技巧、格林函数的性质及Krasnosel’skii不动点定理等方法,获得此分数阶差分方程组至少存在一个正解的充分条件,并通过具体例子证明所得的结论有效. In this paper,by using inequality technique,properties of the Green’s function and the Krasnosel’skii fixed point theorem,a class of couple discrete fractional boundary value problems with fractional boundary value conditions is studied.Sufficient conditions for the existence of at least one positive solution of the fractional systems are established.Meanwhile,examples are presented to illustrate the effectiveness of the main results.
作者 王金华 向红军 WANG Jinhua;XIANG Hongjun(College of Mathematics and Information Science,Xiangnan University,Chenzhou 423000,China)
出处 《应用数学》 CSCD 北大核心 2022年第2期272-279,共8页 Mathematica Applicata
基金 国家自然科学基金项目(12071395) 国家一流本科专业建设点项目(2021)。
关键词 分数阶差分方程组 边值问题 不动点定理 存在性 Couple fractional difference equation Boundary value problem Fixed point Existence
  • 相关文献

参考文献1

二级参考文献14

  • 1Ferreira R A C. Positive solutions for a class of boundary value problems with fractional q-differences[J]. Commput Math Appl, 2011, 61: 367-373.
  • 2Benchohra M, Hamani S, Ntouyas S K. Boundary value problems for differential equations with fractional order and nonlocal conditions[J]. Nonlinear Anal, 2009, 71: 2391-2396.
  • 3Atici F M, Eloe P W. Two-point boundary value problems for finite fractional difference equations[J]. J Differ Equ Appl, 2011, 17(4): 445-456.
  • 4Atici F M, Sengul S. Modeling with fractional difference equations[J]. J Math Anal Appl, 2010, 369(1): 1-9.
  • 5Atici F M, Eloe P W. Two-point boundary value problems for finite fractional difference equations[J]. J Differ Equ Appl, 2011, 17(4): 445-456.
  • 6Atici F M, Uyanik M. Analysis of discrete fractional operators[J]. Appl Anal Discrete Math, 2015, 9(1): 139-149.
  • 7Goodrich C S. On discrete sequential fractional boundary value problems[J]. J Math Anal Appl, 2012, 385(1): 111-124.
  • 8Goodrich C S. Systems of discrete fractional boundary value problems with nonlinearities satisfying no growth conditions[J]. J Differ Equ Appl, 2015, 21(5): 437-453.
  • 9Lv Weidong. Existence and uniqueness of solutions for a discrete fractional mixed type sum- difference equation boundary value problem[J]. Discrete Dyn Nature Soc, 2015, Article ID 376261, 10 pages.
  • 10Luo Xiannan, Guo Shancui. Existence and uniqueness of solutions for fractional boundary value problem with fractional boundary value conditions[J]. Qual Theory Dyn Syst, 2014, (13): 1-17.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部