期刊文献+

Efficient Selection of Linearly Independent Atomic Features for Accurate Machine Learning Potentials

高效选取线性独立的原子特征构建精确机器学习势函数
下载PDF
导出
摘要 Machine learning potentials are promising in atomistic simulations due to their comparable accuracy to first-principles theory but much lower computational cost.However,the reliability,speed,and transferability of atomistic machine learning potentials depend strongly on the way atomic configurations are represented.A wise choice of descriptors used as input for the machine learning program is the key for a successful machine learning representation.Here we develop a simple and efficient strategy to automatically select an optimal set of linearly-independent atomic features out of a large pool of candidates,based on the correlations that are intrinsic to the training data.Through applications to the construction of embedded atom neural network potentials for several benchmark molecules with less redundant linearly-independent embedded density descriptors,we demonstrate the efficiency and accuracy of this new strategy.The proposed algorithm can greatly simplify the initial selection of atomic features and vastly improve the performance of the atomistic machine learning potentials.
作者 Jun-fan Xia Yao-long Zhang Bin Jiang 夏俊凡;张耀龙;蒋彬(中国科学技术大学化学物理系,合肥微尺度物质科学国家研究中心,安徽省教育厅表界面化学与能源催化重点实验室,合肥230026)
出处 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2021年第6期695-703,I0001,共10页 化学物理学报(英文)
基金 supported by CAS Project for Young Scientists in Basic Research(YSBR-005) the National Natural Science Foundation of China(No.22073089 and No.22033007) Anhui Initiative in Quantum Information Technologies(AHY090200) the Fundamental Research Funds for Central Universities(WK2060000017)。
关键词 Linearly independent Feature selection Atomic descriptor Machine learning Embedded atom neural network 线性独立 特征选取 原子描述符 机器学习 嵌入原子神经网络
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部