期刊文献+

Coarse-Grained Molecular Dynamics Study based on TorchMD 被引量:1

基于TorchMD的粗粒化分子动力模拟研究
下载PDF
导出
摘要 The coarse grained(CG)model implements the molecular dynamics simulation by simplifying atom properties and interaction between them.Despite losing certain detailed information,the CG model is still the first-thought option to study the large molecule in long time scale with less computing resource.The deep learning model mainly mimics the human studying process to handle the network input as the image to achieve a good classification and regression result.In this work,the TorchMD,a MD framework combining the CG model and deep learning model,is applied to study the protein folding process.In 3D collective variable(CV)space,the modified find density peaks algorithm is applied to cluster the conformations from the TorchMD CG simulation.The center conformation in different states is searched.And the boundary conformations between clusters are assigned.The string algorithm is applied to study the path between two states,which are compared with the end conformations from all atoms simulations.The result shows that the main phenomenon of protein folding with TorchMD CG model is the same as the all-atom simulations,but with a less simulating time scale.The workflow in this work provides another option to study the protein folding and other relative processes with the deep learning CG model.
作者 Peijun Xu Xiaohong Mou Qiuhan Guo Ting Fu Hong Ren Guiyan Wang Yan Li Guohui Li 许佩军;牟晓红;郭秋含;付婷;任虹;王贵艳;李焱;李国辉(辽宁师范大学,大连116029;大连大学附属中山医院,大连116001;航天中心医院眼科,北京100049;大连海洋大学,大连116001;中国科学院大连化学物理研究所分子反应动力学国家重点实验室,大连116023)
出处 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2021年第6期957-969,I0006,I0158-I0166,共23页 化学物理学报(英文)
基金 supported by the National Natural Science Foundation of China(No.31800615 and No.21933010)。
关键词 Deep learning TorchMD Coarse grained Modified find density peaks STRING 深度学习 TorchMD 粗粒化 修改的搜索密度峰值算法 String算法
  • 相关文献

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部