期刊文献+

利用关系抽取技术联合识别文本中的方面-极性对

Employing relation extraction technology to jointly recognize aspect-polarity pairs in a text
下载PDF
导出
摘要 方面级情感分析旨在识别出句子中显式提及的方面及其情感极性,是细粒度情感分析中的重要任务.现有使用序列标注进行方面级情感分析的方法存在当方面(aspect)由多个单词构成时,每个单词的情感极性可能不一致,而基于跨度(span)的方法存在因方面标签和情感标签混合而导致的标签异质问题,同时现有的研究忽略了文本中方面-情感极性对之间的相互关联.为了解决上述问题,受关系抽取技术的启发,本文将方面-情感极性对抽取视作一元关系抽取问题,其中方面看成论元,其对应的情感极性作为关系,通过序列解码捕捉方面-情感极性对之间的关联.本文在3个数据集上进行了一系列实验来验证模型的有效性,实验结果表明,其性能超过了现有的最佳模型. Aspect-based sentiment analysis aims to identify the aspects mentioned in sentences and their sentiment polarity,which is an important task in fine-grained sentiment analysis.The existing studies use sequence labeling or span-based classification methods,having their own defects such as polarity inconsistency resulted from separately tagging tokens in the former and the heterogeneous categorization in the latter where aspect-related and polarity-related labels are mixed.At the same time,the existing methods ignore the correlation between aspect-polarity pairs in sentences.In order to remedy the above defects,inspiring from the recent advancements in relation extraction,we propose to generate aspect-polarity pairs directly from a text with relation extraction technology,regarding aspect-pairs as unary relations where aspects are entities and the corresponding polarities are relations and utilize sequence decoding to capture the correlation between aspect-polar pairs.The experiments performed on three benchmark datasets demonstrate that our model outperforms the existing state-of-the-art approaches.
作者 卜令梅 陈黎 卢永美 于中华 BU Ling-Mei;CHEN Li;LU Yong-Mei;YU Zhong-Hua(College of Computer Science,Sichuan University,Chengdu 610065,China)
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2022年第1期37-44,共8页 Journal of Sichuan University(Natural Science Edition)
基金 国家重点研发项目(2020YFB0704502)。
关键词 方面级情感分析 方面-情感极性对 关系抽取 Aspect-based sentiment analysis Aspect-sentiment pair Relation extraction
  • 相关文献

参考文献3

二级参考文献14

共引文献81

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部