摘要
军用飞机飞行动作具有较强的随机性和模糊性,为实现针对军用飞机飞行动作的识别和划分,提出了一种基于马尔可夫随机场MRF模型的飞行动作识别划分算法,可以在没有标定的情况下,将飞行数据段分割聚类,实现飞行动作的识别和划分。仿真实验表明,相比于传统的飞行动作识别算法,基于MRF模型的飞行动作识别划分算法且有更高的识别率。
Military aircraft flight action have strong randomness and ambiguity.In order to realize the recognition and division of military aircraft flight action,a Markov Random Field(MRF)based recognition and division algorithm is proposed.The flight data segment is divided and clustered to realize the recognition and division of flight actions.Simulation experiments show that,compared with traditional flight action recognition algorithms,the flight action recognition algorithm based on the MRF model has a higher recognition rate.
作者
颜廷龙
李瑛
王凤芹
YAN Ting-long;LI Ying;WANG Feng-qin(College of Coastal Defense,Naval Aviation University,Yantai 264001;College of Basic Sciences for Aviation,Naval Aviation University,Yantai 264001,China)
出处
《计算机工程与科学》
CSCD
北大核心
2022年第1期159-164,共6页
Computer Engineering & Science
关键词
马尔可夫随机场
动作识别
多元时间序列
聚类
Markov random field
action recognition
multivariate time series
clustering