摘要
Jaeger猜想为“5-边连通图是Z_(3)-连通的”,此猜想对于独立点数为2的图是成立的。利用收缩、点分裂、反证等方法,证明了此猜想对于独立点数为3且点连通度不大于5的图也是成立的。
Jaeger’s Z_(3)-connectivity conjecture is that every 5-edge-connected graph is Z_(3)-connected,this conjecture is true for graphs with independence number 2.It is proved by contraction,vertex-splitting and contradiction methods that this conjecture holds for graphs with independence number 3 and connectivity less than 5.
作者
张小霞
余鲲
黄明芳
ZHANG Xiaoxia;YU Kun;HUANG Mingfang(College of Mathematics and Statistics,Xinyang Normal University,Xinyang 464000,China;School of Science,Wuhan University of Technology,Wuhan 430070,China)
出处
《信阳师范学院学报(自然科学版)》
CAS
北大核心
2022年第1期17-19,共3页
Journal of Xinyang Normal University(Natural Science Edition)
基金
国家自然科学基金项目(11701496,11861069)
中央高校基本科研业务费专项资金(2020IB010)。