期刊文献+

基于表情识别技术的用户研究方法

User Research Method Based on Expression Recognition Technology
下载PDF
导出
摘要 目的为了以更加客观的方式评估用户体验,拓展用户研究的途径,引入表情识别技术对已有用户研究方法进行优化与探索。方法以阅读APP为研究载体,以表情识别与卷积神经网络算法为技术手段,通过设计人机交互实验将其应用于用户研究过程中,建立用户面部表情与用户主观满意度的映射关系。结果针对阅读APP"X",开展了基于表情识别技术和传统问卷访谈的双向设计研究,并采用对比验证的方法得出了基于表情识别技术的用户满意度客观度量方法的有效性和可行性,进而挖掘了基于表情识别方法的用户研究优势。结论基于表情识别技术的用户研究方法在产品交互设计中具有一定的通用性。通过识别分析用户与产品进行人机交互时的面部表情动态变化,可以使用户体验评估更加客观并容易解读,准确定位产品交互体验问题,为设计领域中的用户研究和认识提供了新思路,同时也为表情识别技术与产品设计的交叉融合提供了理论和实践意义的参考。 In order to evaluate the user experience more objectively and expand the way of user research, the expression recognition technology is introduced to optimize and explore the existing user research methods. Taking reading app as research carrier, expression recognition and convolution neural network algorithm as technical means, through the design of human-computer interaction experiment, it is applied in the process of user research, and the mapping relationship between user’s facial expression and user’s subjective satisfaction is established. Aiming at reading app "X", this paper carries out a two-way design research based on facial expression recognition technology and traditional questionnaire interview, and obtains the effectiveness and feasibility of objective measurement method of user satisfaction based on expression recognition technology by using comparative verification method, and then explores the advantages of expression recognition method in user research. The user research method based on expression recognition technology has certain universality in product interaction design. By identifying and analyzing the dynamic changes of facial expressions when users interact with the product, the user experience evaluation can be more objective and easier to interpret, and the product interaction experience problems can be accurately located. In addition, it provides new ideas for user research and understanding in the field of design, and provides theoretical and practical reference for the cross integration of expression recognition technology and product design.
作者 王欢欢 吕紫藤 李现昆 WANG Huan-huan;LYU Zi-teng;LI Xian-kun(Tianjin University of Science&Technology,Tianjin 300222,China;Tianjin Key Laboratory of Integrated Design and On-line Monitoring for Light Industry&Food Machinery and Equipment,Tianjin 300222,China)
出处 《包装工程》 CAS 北大核心 2022年第2期116-121,共6页 Packaging Engineering
基金 国家自然科学基金(51505333)。
关键词 用户研究 表情识别 交互设计 KANO模型 user research facial expression recognition interaction design KANO model
  • 相关文献

参考文献5

二级参考文献34

  • 1Bengio Y. Learning deep architectures for AI[ J ]. Founda- tions and Trends R in Machine Learning, 2009,2 ( 1 ) : 1- 127.
  • 2Hinton G E, Salakhutdinov R R. Reducing the dimension- ality of data with neural networks[ J]. Science, 2006,313 (5786) :504-507.
  • 3Bengio Y, Lamblin P, Popovici D, et al. Greedy layer- wise training of deep networks [ C ]. //Proceedings of the 20th Annual Conference on Neural Information Processing Systems. 2007:153-160.
  • 4Rifai S, Bengio Y, Courville A, et al. Disentangling fac- tors of variation for facial expression recognition[ C ]//Pro- ceedings of the 12th European Conference on Computer Vi- sion. 2012:808-822.
  • 5Zhu Zhenyao, Luo Ping, Wang Xiaogang, et al. Deep learning identity-preserving face space [ C]/! Proceedings of 2013 IEEE Transaction International Conference on Com- puter Vision(ICCV). 2013 ( 12 ) : 113-120.
  • 6Sun Yi, Wang Xiaogang, Tang Xiaoou. Deep learning face representation from predicting 10,000 classes [ C ]// Pro- ceedings of 2014 IEEE Computer Society Conference on Computer Vision and Patter Recognition (CVPR). 2014: 1891-1898.
  • 7Sun Yi, Wang Xiaogang, Tang Xiaoou. Deep learning face representation by joint identification-verification [ R]//Pro- ceedings of IEEE Computer Society Conference on Comput- er Vision and Patter Recognition (CVPR). 2014.
  • 8Liu Ping, Han Shizhong, Meng Zibo, et al. Facial expres- sion recognition via a boosted deep belief network [ C ]// Proceedings of 2014 IEEE Computer Society Conference on Computer Vision and Patter Recognition (CVPR). 2014: 1805-1812.
  • 9Chen Dong, Cao Xudong, Wang Liwei, et al. Bayesian face revisited : A joint formulation [ C] //Proceedings of the 12th European Conference on Computer Vision (ECCV). 2012 (7574) :566-579.
  • 10Liu D C, Nocedal J. On the limited memory method for large scale optimization [ J ]. Mathematical Programming, 1989,45:503-528.

共引文献92

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部