期刊文献+

基于注意力机制的肺结节分类研究 被引量:5

CLASSFICATION OF PULMONARY NODULES BASED ON ATTENTION MECHANISM
下载PDF
导出
摘要 为进一步提升肺结节分类的效果,引入一种基于注意力机制的分类算法。通过在神经网络中添加空间和通道注意力因子,使得肺结节分类网络生成更有效的特征映射,结合梯度提升树算法,进一步提升模型的性能。经过大量实验后,证明了该方法的有效性。 In order to further improve the effect of lung nodule classification,a classification algorithm based on attention mechanism is introduced.By adding spatial and channel attention factors to the neural network,the lung nodule classification network generates more effective feature maps,which is combined with the gradient boosting tree algorithm to further improve the performance of the model.After a lot of experiments,the effectiveness of the this method was proved.
作者 匡健 洪敏杰 刘星辰 贾俊铖 Kuang Jian;Hong Minjie;Liu Xingchen;Jia Juncheng(School of Computer Science and Technology,Soochow University,Suzhou 215000,Jiangsu,China)
出处 《计算机应用与软件》 北大核心 2022年第1期163-167,共5页 Computer Applications and Software
基金 中国博士后科学基金项目(2017M611905) 江苏省高等学校自然科学研究面上项目(17KJB520034) 苏州市科技项目(SS201701,SYSD20192152) 江苏高校优势学科建设工程项目(PAPD)。
关键词 计算机辅助诊断技术 神经网络 肺结节分类 Computer aided diagnosis technology Neural network Pulmonary nodule classification
  • 相关文献

参考文献5

二级参考文献99

  • 1侯志强,韩崇昭.视觉跟踪技术综述[J].自动化学报,2006,32(4):603-617. 被引量:255
  • 2邹海荣,龚振邦,罗均.无人飞行器地面移动目标跟踪系统研究现状与展望[J].宇航学报,2006,27(B12):233-236. 被引量:5
  • 3Zhang S P, Yao H X, Sun X, Lu X S. Sparse coding based visual tracking: review and experimental comparison. Pattern Recognition, 2013, 46(7): 1772-1788.
  • 4Yilmaz A, Javed O, Shah M. Object tracking: a survey. ACM Computing Surveys, 2006, 38(4): 13.
  • 5Maggio E, Cavallaro A. Video Tracking: Theory and Practice. West Sussex: Wiley, 2011.
  • 6Yoo S, Kim W, Kim C. Saliency combined particle filtering for aircraft tracking. Journal of Signal Processing Systems, 2013, doi: 10.1007/s11265-013-0803-x.
  • 7Itti L, Koch C. Computational modelling of visual attention. Nature Reviews Neuroscience, 2001, 2(3): 194-203.
  • 8Frintrop S, Rome E, Christensen H I. Computational visual attention systems and their cognitive foundations: a survey. ACM Transactions on Applied Perception, 2010, 7(1): 1-39.
  • 9Frintrop S. Computational visual attention. Computer Analysis of Human Behavior. London: Springer, 2011. 69101.
  • 10Borji A, Itti L. State-of-the-art in visual attention modeling. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1): 185-207.

共引文献191

同被引文献43

引证文献5

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部