期刊文献+

基于深度学习的矿井无线网络流量预测研究 被引量:3

Research on mine wireless network traffic prediction based on deep learning
下载PDF
导出
摘要 为准确预测矿井无线网络流量变化情况,确保井下无线网络安全稳定运行,保障矿井安全生产。在分析无线网络流量特征的基础上提出一种时空卷积全连接网络(CL-FCCNet),它是基于残差网络(ResNets)和循环神经网络(RNN)的无线网络流量预测模型。预测模型能够针对复杂的无线网络工作环境进行流量预测,及流量数据中存在的时空特征,帮助实现流量监控异常自动报警。试验结果表明:模型的预测效果较现有预测方法具有一定的提升。 In order to accurately predict the change of mine wireless network flow,ensure the safe and stable operation of underground wireless network and ensure the safety of mine production.Based on the analysis of the traffic characteristics of wireless network,this paper proposes a kind of CL-FCCNet,which is a traffic prediction model based on residual network(ResNets)and circular neural network(RNN).The prediction model can forecast traffic for complex wireless network working environment,model the temporal and spatial characteristics of traffic data,and help to realize the abnormal automatic alarm of traffic monitoring.The experimental results show that the prediction effect of the model is improved compared with the existing prediction methods.
作者 王跃文 常琳 李鸣 WANG Yuewen;CHANG Lin;LI Ming(School of Computer Science and Technology,China University of Mining and Technology,Xuzhou 221116,China;Mining Products Safety Approval and Certification Center Co.,Ltd.,Beijing 100013,China;Mine Digitization Engineering Research Center of the Ministry of Education,Xuzhou 221116,China)
出处 《煤矿安全》 CAS 北大核心 2021年第12期153-158,164,共7页 Safety in Coal Mines
基金 国家自然科学基金面上资助项目(51874302)。
关键词 残差网络 无线网络流量预测 循环神经网络 矿井无线通信 深度学习 residual network wireless network traffic prediction recurrent neural network mine wireless communication deep learning
  • 相关文献

参考文献3

二级参考文献42

共引文献301

同被引文献33

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部