期刊文献+

肝脏磁共振图像分割方法的研究

Study on Segmentation of Liver Magnetic Resonance Imaging
下载PDF
导出
摘要 肝脏磁共振图像分割是诊断肝脏疾病的重要手段之一,偏移场是肝脏磁共振图像中通常存在的灰度不均匀现象,导致图像分割效果不理想。采用正则化相邻局部灰度聚类算法对肝脏磁共振图像进行偏移场矫正,在能量函数中加入辅助变量来解决非凸隶属函数,通过迭代计算得到最优偏移场矫正结果,并采用基于水平集的图像分割算法对矫正后图像进行分割。通过差值图像、灰度直方图、Jaccard参数和Dice参数来评价算法的性能及图像分割效果,并与非参数非均匀归一化变量(N4)算法进行对比分析。实验结果表明,相邻局部灰度聚类算法引入总变分项进行偏移场矫正后,图像与原始图像差值更大,灰度分布更均匀,图像分割结果更准确,便于医生进行病理观察及诊断。 Segmentation of liver magnetic resonance(MR) image is one of the most important methods for diagnosis of liver diseases. The bias field is a common phenomenon of uneven grayscale in liver MR images,which leads to suboptimal image segmentation. In this paper, the coherent local intensity clustering(CLIC)algorithm with regularization is used to correct the bias field of liver MR images. The auxiliary variable is added to the energy function to solve the non-convex membership function. The correction result of optimal bias field is achieved by iterative calculation. An image segmentation algorithm based on level set is used to segment the corrected image. The performance of the algorithm and the effect of image segmentation are evaluated by difference image, gray histogram, Jaccard index and Dice index, and then compared with the nonparametric nonuniform normalization variant(N4) algorithm. The experimental results show that the difference between the corrected image and original image is larger, the gray distribution is more uniform, and the segmentation result is more accurate after introducing a total variation term to CLIC algorithm to correct the bias field, which is convenient for doctors to make pathological observation and diagnosis.
作者 马静 张苏元 吴顺义 徐军 MA Jing;ZHANG Su-yuan;WU Shun-yi;XU Jun(School of Measurement and Communication Engineering,Harbin University of Science and Technology,Harbin 150080,China;School of Automation,Harbin University of Science and Technology,Harbin 150080,China)
出处 《控制工程》 CSCD 北大核心 2021年第12期2323-2328,共6页 Control Engineering of China
基金 黑龙江省自然科学基金资助项目(F201308)。
关键词 图像分割 相邻局部灰度聚类 偏移场矫正 非凸正则化 Image segmentation coherent local intensity clustering bias field correction non-convex regularization
  • 相关文献

参考文献4

二级参考文献23

  • 1韩江洪,李正荣,魏振春.一种自适应粒子群优化算法及其仿真研究[J].系统仿真学报,2006,18(10):2969-2971. 被引量:122
  • 2Hou ZJ. A review on MR image intensity inhomogeneity cor- rection [ J ]. International Journal of Biomedical Imaging, 2006 : 1-11.
  • 3Salvado O,Hillenbrand C, Zhang S, et al. Method to correct intensity inhomogeneity in MR images for atherosclerosis char- acterization[ J]. IEEE Transactions On Medical Image,2006, 25(5) :539-552.
  • 4Likar B,Viegver Max A, Pernus F. Retrospective correction of MR intensity inhomogeneity by information minization [ J ]. IEEE Transactions On Medical Image,2001, 20 : 1398-1410.
  • 5Chan TF, Vese LA. active contours without edges [ J]. IEEE Transactions on Image Processing, 2001, 10(2) :266-277.
  • 6Li CM, Kao CY, John CG, et al. Implicit active contours driven by local binary fitting energy [ C 1. Proceedings of IEEE conference on Computer Vision and Pattern Recogni- tion. Minneapolis, MN: IEEE, 2007 : 1-7.
  • 7Li CM, Kao CY, John CG, et al. Minimization of region- scalable fitting energy for image segmentation [ J ]. IEEE Transactions on Image Processing, 2008, 17 ( 10 ) : 1940- 1949.
  • 8Li CM, Huang R, Ding Z, et al. A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI[ J]. IEEE Transactions on Image Process- ing,2011. 20(7) :2007-2016.
  • 9Wang HJ, Liu M. Novel model for brain MR images segmenta- tion and bias cmTection in the presence of intensity inhomoge- neity[ J ]. Journal of Shandong University : Engineering Sci- ence,2011,41 (3) :36-41.
  • 10Chen W,Giger ML. A fuzzy C-Means(FCM) based algorithm for intensity inhomogeneity correction and segmentation of MR images [ J ]. IEEE International symposium, 2004,2 : 1307- 1310.

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部