期刊文献+

基于变量选择与组合协方差的GPR建模方法及其应用 被引量:1

GPR Modeling Method and Its Application Based on Variable Selection and Combined Covariance
下载PDF
导出
摘要 针对工业污水处理过程的复杂性和明显的非线性特征,关键的水质指标生化需氧量往往无法实时在线监测,提出了组合协方差的高斯过程回归(combinedcovariance Gaussian process regression,CGPR)建模方法来建立生化需氧量预测模型,捕捉污水数据中主导变量与辅助变量的线性和非线性关系。考虑污水处理过程中各个辅助变量之间的非线性和相关性,在模型建立之前采用随机森林(random forest,RF)算法给出辅助变量重要性评分,重要性评分高的变量作为CGPR模型的输入来提高模型的预测精度。最后,利用污水处理过程数据进行仿真研究。仿真结果表明,所提的RF-CGPR方法能够达到较好的预测效果,其中结合了线性协方差和Matern协方差的模型具有较高的预测精度。 The process of industrial sewage treatment is complex and has obvious nonlinear characteristics,and the key water quality index of biochemical oxygen demand cannot be monitored online in real time.To solve the problem,a modeling method of combined covariance Gaussian process regression(CGPR)is proposed in this paper to establish the prediction model of biochemical oxygen demand to capture the linear and nonlinear relationship between the leading and auxiliary variables in the sewage data.Considering the nonlinearity and correlation among the auxiliary variables in the sewage treatment process,the random forest(RF)algorithm is used to give the importance measure of the auxiliary variables before the model is established.Then,the variables with high importance measure are selected as the CGPR model input to improve the prediction accuracy of the model.Finally,the the sewage treatment process data are used for simulation research.The simulation results show that the proposed RF-CGPR method can achieve good prediction results,and the model combined with linear covariance and Matern covariance has higher prediction accuracy.
作者 孙顺远 刘康康 SUN Shun-yuan;LIU Kang-kang(School of Internet of Things Engineering,Jiangnan University Wuxi 214122,China;Key Laboratory of Advanced Process Control for Light Industry of Ministry of Education,Jiangnan University Wuxi 214122,China)
出处 《控制工程》 CSCD 北大核心 2021年第12期2336-2342,共7页 Control Engineering of China
基金 国家自然科学基金资助项目(61773182) 江苏高校优势学科建设工程资助项目(PAPD)。
关键词 变量选择 随机森林 组合协方差 高斯过程回归 污水处理 Variable selection random forest combined covariance Gaussian process regression sewage treatment
  • 相关文献

参考文献7

二级参考文献120

  • 1冉维丽,乔俊飞.基于PCA-GABP神经网络的BOD软测量方法[J].控制工程,2004,11(3):212-215. 被引量:21
  • 2唐伟,周志华.基于Bagging的选择性聚类集成[J].软件学报,2005,16(4):496-502. 被引量:95
  • 3桑海峰,王福利,何大阔,张大鹏,何建勇.基于多支持向量机的诺西肽发酵中菌体浓度软测量[J].系统仿真学报,2006,18(7):1983-1986. 被引量:6
  • 4苏国韶,燕柳斌,张小飞,江权.基坑位移时间序列预测的高斯过程方法[J].广西大学学报(自然科学版),2007,32(2):223-226. 被引量:24
  • 5Williams C K I, Rasmussen C E. Gaussian processes for machine learning[M]. Cambridge: MIT Press, 2006: 7-32.
  • 6Kocijan J. Control algorithms based on Gaussian process models: A state-of-the-art survey[C].Proc of the Special Int Conf on Complex Systems: Synergy of Control, Communications and Computing. Ohrid, 2011: 69-80.
  • 7Park C W, Huang J H Z, Ding Y. Domain decomposition approach for fast Gaussian process regression of large spatial data sets[J]. J of Machine Learning Research, 2011, 12: 1697-1728.
  • 8He Z K, Liu G B, Zhao X J, et al. Temperature model for FOG zero-bias using Gaussian process regression[J]. Advances in Intelligent Systems and Computing, 2012, 180: 37-45.
  • 9Snelson E. Flexible and efficient Gaussian process models for machine learning[D]. London: Gatsby Computational Neuroscience Unit, University of London, 2007.
  • 10Williams C K I, Seeger M. Using the Nystrom method to speed up kernel machines[C]. Proc of the Int Conf on Advances in Neural Information Processing Systems(NIPS) 13. Denver, 2001: 682-688.

共引文献267

同被引文献13

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部