摘要
为提升电力系统短期负荷预测精度,提出粒子群算法优化量子加权门控循环单元神经网络模型。首先,将量子加权神经元融入门控循环单元神经网络中,构建量子加权门控循环单元神经网络预测模型,利用量子信息处理机制,提高该神经网络的非线性逼近能力和泛化能力。然后,使用全局优化能力较强的改进粒子群优化算法对所提出模型的参数进行寻优,构建权重矩阵进行负荷预测。最后,通过实际电网算例进行仿真,仿真结果表明,本文提出的粒子群优化量子加权门控循环单元神经网络预测模型的预测精度较高。
To improve the short-term load forecasting accuracy of power system,a particle swarm optimized quantum weighted gated recurrent unit(QWGRU-PSO)neural network model is proposed in this paper.First,the quantum weighted neuron is integrated into the GRU neural network,and the quantum weighted GRU neural network prediction model is constructed.By means of the quantum information processing mechanism,the neural network can obtain better nonlinear approximation and generalization capabilities.Then,the improved particle swarm optimization(PSO)algo⁃rithm with a strong global optimization capability is used to optimize the parameters of the proposed model and construct a weight matrix for load forecasting.Through the simulation of an actual power grid as an example,it is verified that the proposed QWGRU-PSO neural network prediction model has a higher prediction accuracy.
作者
王凇瑶
张智晟
WANG Songyao;ZHANG Zhisheng(College of Electrical Engineering,Qingdao University,Qingdao 266071,China)
出处
《电力系统及其自动化学报》
CSCD
北大核心
2022年第1期1-7,共7页
Proceedings of the CSU-EPSA
基金
国家自然科学基金资助项目(52077108)。
关键词
短期负荷预测
量子加权门控循环单元
神经网络
粒子群优化算法
电力系统
short-term load forecasting
quantum weighted gated recurrent unit(GRU)
neural network
particle swarm optimization(PSO)algorithm
power system