期刊文献+

基于深度学习的电力信息网络流量异常检测 被引量:11

Traffic Anomaly Detection of Power Communication Networks Based on Deep Learning
下载PDF
导出
摘要 随着信息技术的快速发展,通信、计算机和电网构成多功能复杂系统,通信设施的复杂化使智能电网网络安全问题日益严峻。为确保电力信息网络具有更高的安全性能,必须有效识别电力信息网络存在的入侵攻击。对此,提出了一种基于CNN(卷积神经网络)和LSTM(长短期记忆)网络的混合网络的异常检测方法,混合网络通过提取网络流量数据特征以获得较高的检测率,同时为减少模型训练样本中不同攻击类型样本数量不平衡对模型性能的影响,采用类别权重优化方法来提高模型鲁棒性。经实验证明,所提方法能够有效提高识别网络攻击的准确率。 With the rapid development of information technology, communication, computers and power grids constitute a multi-functional complex system. The complex communication facilities make network security of smart grid increasingly serious. Only by identifying intrusive attacks in power communication networks can higher safety performance be guaranteed. Therefore, the paper proposes a hybrid network anomaly detection method based on convolutional neural network(CNN) and long short-term memory(LSTM) network is proposed. The hybrid network obtains a high detection rate by extracting the characteristics of network traffic data. At the same time, the class weight optimization method is used to improve the robustness of the model to reduce the impact of the imbalanced number of different attack types on the model performance. The experimental results show that the method can effectively improve the accuracy of cyberattack identification.
作者 杜浩良 孔飘红 金学奇 黄银强 DU Haoliang;KONG Piaohong;JIN Xueqi;HUANG Yinqiang(State Grid Jinhua Power Supply Company,Jinhua Zhejiang 321000,China;State Grid Zhejiang Electric Power Co.,Ltd.,Hangzhou 310007,China)
出处 《浙江电力》 2021年第12期117-123,共7页 Zhejiang Electric Power
基金 国网浙江省电力有限公司科技项目(5211JH1900M2)。
关键词 卷积神经网络 异常检测 长短期记忆 网络安全 电力系统安全 convolutional neural network anomaly detection long short-term memory cyber security power system security
  • 相关文献

参考文献8

二级参考文献74

  • 1朱良根,张玉清,雷振甲.DoS攻击及其防范[J].计算机应用研究,2004,21(7):82-84. 被引量:20
  • 2田大新,刘衍珩,魏达.ARTNIDS:基于自适应谐振理论的网络入侵检测系统[J].计算机学报,2005,28(11):1882-1889. 被引量:8
  • 3陆正伟,钱江.一种应用免疫原理的入侵检测原型系统[J].微计算机信息,2006,22(07X):97-99. 被引量:8
  • 4陆林花,王波.一种改进的遗传聚类算法[J].计算机工程与应用,2007,43(21):170-172. 被引量:26
  • 5Oxgur Depren,Murat Topallar, An intelligent intrusion detection system for anomaly and misuse detection in computers networks[J]. Expert Systems with Applications 29(2005)713-722.
  • 6Fredric M.Ham;Ivica Kostanic.神经计算原理[M]{H}北京:机械工业出版社,2007.
  • 7葛哲学;孙志强.神经网络理论与MATLAB R2007[M]{H}北京:电子工业出版社,2007.
  • 8AXELSSON S. Intrusion detection systems: a survey and taxonomy [ J]. Computers and Security, 2000, 20(1) : 676 -683.
  • 9SOMMER R, PAXSON V. Outside the closed world: on using ma- chine learning for network intrusion detection[ C]// Proceedings of the 2010 IEEE Symposium on Security and Privacy. Washington, DC: IEEE Computer Society, 2010:305 - 316.
  • 10SHAMSHIRBAND S, ANUAR N B, KIAH M L M, et al. An ap- praisal and design of a multi-Agent system based cooperative wireless intrusion detection computational intelligence technique[ J]. Engi- neering Applications of Artificial Intelligence, 2013, 26(9): 2105 - 2127.

共引文献265

同被引文献116

引证文献11

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部