期刊文献+

带变动偏序结构的集优化问题的适定性 被引量:1

Well-posedness for set optimization problems with variable ordering structures
下载PDF
导出
摘要 针对带变动偏序结构的集优化问题,引入了LP适定性及广义LP适定性概念,进一步给出了其LP适定性及广义LP适定性的充分条件与刻画,发展了固定偏序结构下的相关成果。 In this article,concepts of Levitin-Polyak well-posedness and Levitin-Polyak well-posedness in the generalized sense are rstly proposed for set optimization problems with variable ordering structures.Then,sufficient conditions and characterizations are given for Levitin-Polyak well-posedness and Levitin-Polyak well-posedness in the generalized sense for the problems.These results develop some relevant researches with xed ordering structures.
作者 熊佳琪 王三华 李秋英 Xiong Jiaqi;Wang Sanhua;Li Qiuying(Department of Mathematics,Nanchang University,Nanchang 330031,China;College of Science and Technology,Nanchang University,Jiujiang 332020,China)
出处 《南昌大学学报(理科版)》 CAS 北大核心 2021年第6期525-532,共8页 Journal of Nanchang University(Natural Science)
基金 国家自然科学基金资助项目(11661055,11801257,71971102) 江西省自然科学基金资助项目(20212BAB201028) 江西省教育厅科学技术研究项目(208708)。
关键词 集优化问题 适定性 变动偏序结构 变动序关系 无限上连续性 Set optimization problem Well-posedness Variable ordering structure Variable ordering relation Cosmically upper continuity
  • 相关文献

参考文献3

二级参考文献19

  • 1Kuroiwa D., On set-valued optimization, Nonlinear Analysis TMA, 2001, 47: 1395-1400.
  • 2Kuroiwa D., Tanaka T., Ha T. X. D., On cone convexity of set-valued maps, Nonlinear Analysis TMA, 1997, 30:1487- 1496.
  • 3Ha T. X. D., Some variants of the Ekeland variational principle for a set-valued map, Y. Optim. Theory Appl., 2005, 124:187-206.
  • 4Alonso M., Rodriguez-Marin L., Set-relations and optimality conditions in set-valued maps, Nonlinear Analysis TMA, 2005, 63: 1167-1179.
  • 5Kuroiwa D., On Weighted Criteria of set Optimization, In: International Conference on Nonlinear Analysis and Convex Analysis, Hirosaki, 2001, 233- 237.
  • 6Kuroiwa D., Existence of efficient points of set optimization with weighted criteria, J. Nonlinear Convex Anal., 2003, 4: 117-123.
  • 7Nishnianidze Z. G., Fixed points of monotonic multiple-valued operators, Bull. Acad. Sci. Georian SSR, 1984, 114: 489-491.
  • 8Fang Y. P., Huang N. J., Kim J. K., A system of multi-valued generalized order complementarity problems in ordered metric spaces, Z. Anal. Anwendungen., 2003, 22: 779-788.
  • 9Nguyen B. H., Nguyen H. K., Fixed point for multivalued increasing operators, J. Math. Anal. Appl., 2000, 250: 368-371.
  • 10Chen G. Y., Huang X. X., Hou S. H., General Ekeland's variational principle for set-valued mappings, J. Optim. Theory Appl., 2000, 106: 151-164.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部