摘要
针对带变动偏序结构的集优化问题,引入了LP适定性及广义LP适定性概念,进一步给出了其LP适定性及广义LP适定性的充分条件与刻画,发展了固定偏序结构下的相关成果。
In this article,concepts of Levitin-Polyak well-posedness and Levitin-Polyak well-posedness in the generalized sense are rstly proposed for set optimization problems with variable ordering structures.Then,sufficient conditions and characterizations are given for Levitin-Polyak well-posedness and Levitin-Polyak well-posedness in the generalized sense for the problems.These results develop some relevant researches with xed ordering structures.
作者
熊佳琪
王三华
李秋英
Xiong Jiaqi;Wang Sanhua;Li Qiuying(Department of Mathematics,Nanchang University,Nanchang 330031,China;College of Science and Technology,Nanchang University,Jiujiang 332020,China)
出处
《南昌大学学报(理科版)》
CAS
北大核心
2021年第6期525-532,共8页
Journal of Nanchang University(Natural Science)
基金
国家自然科学基金资助项目(11661055,11801257,71971102)
江西省自然科学基金资助项目(20212BAB201028)
江西省教育厅科学技术研究项目(208708)。
关键词
集优化问题
适定性
变动偏序结构
变动序关系
无限上连续性
Set optimization problem
Well-posedness
Variable ordering structure
Variable ordering relation
Cosmically upper continuity