期刊文献+

高效计算因果网中的干预

Efficient Computation of Intervention in Causal Bayesian Networks
下载PDF
导出
摘要 在因果网中,对和积问题因果效果的计算是其首要问题,从有向无环图的角度,研究者们发现每一个因果网都有一个与之对应的贝叶斯网络,干预是因果网的一个基本操作。类似于贝叶斯网络中的剪枝策略,在剪枝掉所有无效结点后,文中设计了一种优化的算法OFDo来计算对因果网中每个结点的完全原子干预。文中接着研究多干预操作,发现多干预操作具有可交换性,并基于多干预操作的可交换性证明了多干预操作的优化计算策略。最后,通过实验证实OFDo计算对因果网中所有结点完全原子干预的效率比目前的算法都好。 In causal Bayesian networks(CBNs),it is a fundamental problem to compute the causal effect of sum product.From the perspective of a directed acyclic graph,we show every CBN has a corresponding Bayesian network.Intervention is a fundamental operation in CBNs.Similar to Bayesian networks,CBNs also have the pruning strategy.After pruning the barren nodes,this paper devises an optimized jointree algorithm to compute the full atomic intervention on each node in a CBN.Then,this paper explores the multiple interventions on multiple nodes,and finds that multiple interventions have the commutative property.On the basis of the commutative property in multiple interventions,this paper proves the strategies,which can be used to optimize the computation of the causal effect of multiple interventions.Finally,we report experimental results to demonstrate the efficiency of our algorithm to compute the causal effects in CBNs.
作者 李超 覃飙 LI Chao;QIN Biao(Business School,China University of Political Science and Law,Beijing 100088,China;Information School,Renmin University of China,Beijing 100872,China)
出处 《计算机科学》 CSCD 北大核心 2022年第1期279-284,共6页 Computer Science
基金 中国政法大学科研创新项目(19ZFG79002) 中国政法大学新兴学科培育与建设计划 国家自然科学基金项目(61772534) 教育部哲学社会科学重大课题(19JHQ007) 中央高校基本科研业务费专项资金。
关键词 因果网 干预 无效结点 完全原子干预 多干预 Causal Bayesian networks Intervention Barren nodes Full atomic intervention Multiple interventions
  • 相关文献

参考文献5

二级参考文献30

  • 1Darwiche A.Modeling and reasoing with Bayesian networks[M].Cambridge:Cambridge University Press,2009.
  • 2Park J,Darwiche A.Complexity results and approximation strategies for MAP explanations[J].Journal of Artificial Intelligence Research,2004,21(1):101-133.
  • 3Dechter R.Bucket elimination:a unifying framework for reasoning[J].Artificial Intelligence,1999,113(1-2):41-85.
  • 4Kask K,Dechter R.A general scheme for automatic generation of search heuristics from specification dependencies[J].Artificial Intelligence,2001,129(1-2):91-131.
  • 5Park J,Darwiche A.Solving map exactly using systematic search[C]//Proc of the 19th Conference on Uncertainty in Artificial Intelligence.San Francisco:Morgan Kaufmann,2003:459-468.
  • 6Park J,Darwiche A.Approximating MAP using local search[C]//Proc of the 17th Conference on Uncertainty in Artificial Intelligence.San Francisco:Morgan Kaufmann,2001:403-410.
  • 7Hutter F,Hoos H,Stutzle T.Efficient stochastic local search for MPE solving[C]//Proc of International Joint Conference on Artificial Intelligence.Denver:Professional Book Center,2005:169-174.
  • 8Kim J,Pearl J.A computational model for combined causal and diagnostic reasoning in inference systems[C]// Proc of International Joint Conference on Artificial Intelligence.1983:190-193.
  • 9Song Shaoxu,Chen Lei,Yu J X.Answering frequent probabilistic inference queries in databases[J].IEEE Trans on Knowledge and Data Engineering,2011,23(4):512-526.
  • 10Cui Yingwei,Widom J,Wiener J.Tracing the lineage of view data in a warehousing environment[J].ACM Trans on Databases Systems,2000,25(2):179-227.

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部