摘要
设n是一非负整数,引入FC_(n)-投射模和Gorenstein FC_(n)-投射模,并在左n-余凝聚环上讨论了Gorenstein FC_(n)-投射模的同调性质.证明了:若R是左n-余凝聚环且任意有限n-余表示R-模的内射维数有限,则任意R-模是Gorenstein FC_(n)-投射模当且仅当任意循环R-模是Gorenstein FC_(n)-投射模,当且仅当任意内射R-模是FC_(n)-投射模.
Let n be a nonnegative integer,FC_(n)-projective modules and Gorenstein FC_(n)-projective modules are introduced,and the homological properties of the class of Gorenstein FC_(n)-projective modules are investigated on left n-cocoherent rings.It is proved that if R is a n-cocoherent ring and the injective dimension of every finitely n-copresented R-module is finite,then every R-module is Gorenstein FCnprojective,if and only if every cycle R-module is Gorenstein FC_(n)-projective,and if and only if every injective R-module is FC_(n)-projective.
作者
张文汇
高华云
ZHANG Wen-hui;GAO Hua-yun(College of Mathematics and Statistics,Northwest Normal University,Lanzhou 730070,Gansu,China)
出处
《西北师范大学学报(自然科学版)》
CAS
北大核心
2022年第1期14-18,共5页
Journal of Northwest Normal University(Natural Science)
基金
国家自然科学基金资助项目(11861055)。