摘要
采用经典的最速下降法构造一类Lipschitz连续的拟反向强单调算子的零点,在相当宽松柔和的条件下,建立了一个弱收敛结果。将弱收敛定理应用于分裂公共不动点问题,所得结果改进了近期文献的相应结果。
In this paper,the classical steepest descent method has been used to construct the zeros of a class of Lipschitz continuous and quasi-inverse strongly monotone operators.Under very mild conditions,a weak convergence theorem is established.Applying our weak convergence theorem to the split common fixed point problem,some new results are deduced which improve the recent known results in literature.
作者
杨延涛
陈晶晶
周海云
YANG Yantao;CHEN Jingjing;ZHOU Haiyun(College of Mathematics and Computer Science,Yanan University,Yanan 716000,Shaanxi Province,China;College of Mathematics and Information,Hebei Normal University,Shijiazhuang 050024,China)
出处
《浙江大学学报(理学版)》
CAS
CSCD
北大核心
2022年第1期49-52,共4页
Journal of Zhejiang University(Science Edition)
基金
国家自然科学基金资助项目(61861044)
榆林市科技计划项目(CXY-2020-067)
延安大学2021年研究生创新计划项目(YCX2021059).
关键词
拟反向强单调算子
最速下降法
弱收敛
分裂公共不动点问题
Quasi-inverse strongly monotone operator
steepest descent method
weak convergence
split common fixed point problem