期刊文献+

涉及拟反向强单调算子零点的一个弱收敛结果及其应用 被引量:1

A weak convergence theorem involving the zero point of quasi-inverse strongly monotone operators with application
下载PDF
导出
摘要 采用经典的最速下降法构造一类Lipschitz连续的拟反向强单调算子的零点,在相当宽松柔和的条件下,建立了一个弱收敛结果。将弱收敛定理应用于分裂公共不动点问题,所得结果改进了近期文献的相应结果。 In this paper,the classical steepest descent method has been used to construct the zeros of a class of Lipschitz continuous and quasi-inverse strongly monotone operators.Under very mild conditions,a weak convergence theorem is established.Applying our weak convergence theorem to the split common fixed point problem,some new results are deduced which improve the recent known results in literature.
作者 杨延涛 陈晶晶 周海云 YANG Yantao;CHEN Jingjing;ZHOU Haiyun(College of Mathematics and Computer Science,Yanan University,Yanan 716000,Shaanxi Province,China;College of Mathematics and Information,Hebei Normal University,Shijiazhuang 050024,China)
出处 《浙江大学学报(理学版)》 CAS CSCD 北大核心 2022年第1期49-52,共4页 Journal of Zhejiang University(Science Edition)
基金 国家自然科学基金资助项目(61861044) 榆林市科技计划项目(CXY-2020-067) 延安大学2021年研究生创新计划项目(YCX2021059).
关键词 拟反向强单调算子 最速下降法 弱收敛 分裂公共不动点问题 Quasi-inverse strongly monotone operator steepest descent method weak convergence split common fixed point problem
  • 相关文献

参考文献1

二级参考文献20

  • 1Candes,E J,Romberg,J,Tao,T. Robust uncertainty principles:Exact signal reconstruction from highly incomplete frequency information[J].IEEE Transactions on Information Theory,2006,(02):489-509.
  • 2Candes,E J,Romberg,J,Tao,T. Stable signal recovery from incomplete and inaccurate measurements[J].Comm Pure Applied Math,2006,(02):1207-1223.
  • 3Candes,E J,Tao,T. Near-optimal signal recovery from random projections:Universal encoding strategies[J].? IEEE Trans Inform Theory,2006,(12):5406-5425.
  • 4Candes,E J,Wakin,M B. An introduction to compressive sampling[J].IEEE Signal Processing Magazine,2008.21-30.
  • 5Cipra,B A. e1-magic[J].SIAM News,2006,(09).
  • 6Combettes,P L,Wajs,R. Signal recovery by proximal forward-backward splitting[J].MULTISCALE MODELING & SIMULATION,2005,(04):11681200.
  • 7Donoho,D. Compressed sensing[J].IEEE Transactions on Information Theory,2006,(04):1289-1306.
  • 8Friedman,J,Hastie,T,Tibshirani,R. A note on the group lasso and a sparse group lasso[Z].arXiv:1001 0736V1,.
  • 9Geobel,K,Kirk,W A. Topics in Metric Fixed Point Theory[A].Cambridge University Press,1990.
  • 10Hebiri,M,van de Geer,S. The smooth-lasso and other e1+e2-penalized methods[J].Electron J Statist,2011.11841226.

共引文献5

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部