期刊文献+

二阶可积边值问题特征函数的渐近表示

Asymptotic representation of eigenfunctions for the second-order integrable boundary value problems
下载PDF
导出
摘要 目的研究一类二阶可积边值问题特征函数的渐近估计式。方法借用打靶法思想,结合分析技巧。结果在势函数满足一定光滑性条件下得到了特征函数的高阶无穷小的渐近估计。结论特征函数及特征值的渐近估计式受到边界条件及势函数光滑性的影响。 Purposes—To study the asymptotic estimation formula of the eigenfunctions for the second-order integrable boundary value problems with integral condition.Methods—The shooting method and analytical technic are used for solving this problem.Result—Under the condition that the potential function satisfies certain smoothness is obtained the higher-order infinitesimal asymptotic estimation of the eigenfunction.Conclusion—The asymptotic estimations of eigenfunctions and eigenvalues are affected by boundary conditions and the smoothness of potential function.
作者 张科良 刘喜兰 ZHANG Ke-liang;LIU Xi-lan(School of Mathematics and Information Science, Baoji University of Arts and Sciences, Baoji 721013, Shaanxi, China)
出处 《宝鸡文理学院学报(自然科学版)》 CAS 2021年第4期4-8,共5页 Journal of Baoji University of Arts and Sciences(Natural Science Edition)
基金 国家自然科学基金项目(11361047) 陕西省教育厅专项科研计划项目(自然科学类)(21JK0479) 宝鸡文理学院研究生创新项目(YJSCX20ZC14)。
关键词 积分边值条件 特征函数 渐近估计式 integral boundary condition eigenfunction asymptotic formula
  • 相关文献

参考文献2

二级参考文献16

  • 1王海兵,刘继军.一类Sturm-Liouville问题特征的渐近分析[J].应用数学,2005,18(4):654-661. 被引量:5
  • 2Posche J, Trubowitz E. Inverse Spectral Theory [M]. London: Academic Press Inc, 1987.
  • 3Kirsch A. An Introduction to the Mathematical Theory of Inverse Problems[M]. New York: springer-verleg, 1996.
  • 4Savchuk A M. On the Eigenvalues and Eigenfunctions of the Sturm-Liouville Operator with a Singular Potential [J]. Mathmatical Notes,2001,69(2) :245-252.
  • 5Zygmund A. Trigonometric Series [M]. Cambridge :Cambridge Univ. Press, 1959.
  • 6Attili Basem S, Syam Muhammed I. Efficient shooting method for solving two point boundary value problems[J]. Chaos, Solitons and Fractals, 2008, 35: 895-903.
  • 7Mehdi Dehghan, Ahmad Nikpour. Numerical solution of the system of second-order boundary value problems using the local radial basis functions based differential quadrature collocation method[J]. Appl. Math. Modelling, 2013, 37: 8578-8599.
  • 8HUA Hongtu, CONG Fuzhong, CHENG Yi. Notes on existence and uniqueness of solutions for second order periodic-integrable boundary value problems[J]. Appl. Math. Lett., 2012, 25: 2423-2428.
  • 9KONG Lingju. Second order singular boundary value problems with integral boundary conditions[J]. Nonlinear Anal., 2010, 72: 2628-2638.
  • 10LIU Xilan, SHI Xiaoyang. Existence of solutions for second-order periodic-integrable boundary value problems[J]. Appl. Math. Lett., 2014, 37: 91-94. K.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部