期刊文献+

一个新的上下文感知类案匹配与推荐方法 被引量:5

A Novel Context-aware Similar Case Matching and Recommendation Method
下载PDF
导出
摘要 根据现有的类案推荐方法得到的相似案件,其精确度通常很难满足法官的需求,辅助判案效果有限。为此,提出了一个基于上下文感知的类案匹配和推荐模型(CASCMR).模型为实现端到端高效率的文本匹配与推荐,使用多语义文档表达框架,并通过文本向量预先计算与存储,减少匹配时间,进而提高效率。具体而言,为了更好地对法律长文本进行建模,CASCMR使用BERT对数据进行编码,利用其注意力机制捕获文本长距离依赖信息。同时,考虑法律文本从局部到全局的信息,利用双向LSTM和CNN分别获取文本的上下文信息和局部语义特征,提高法律文本的表征能力,从而提升模型的预测性能。将所提出的模型应用到中国法研杯2019相似案件匹配任务,实验结果显示,与目前最好的方法相比,匹配和推荐精度的提升效果较为明显。 As far as we know,it is usually difficult for the accuracy of similar cases obtained by the existing case recommendation methods to meet the needs of judges,and thus the effect of auxiliary judgment is limited.Therefore,in this paper a novel context-aware similar case matching and recommendation model(CASCMR).In order to achieve end-to-end efficient text matching and recommendation was proposed.The model uses a multi-semantic document expression framework to realize the pre-calculation and storage of text vectors,so as to reduce the matching time and improve the efficiency.Specifically,in order to model the long legal text,CASCMR uses BERT for encoding since its attention mechanism can capture the long-term dependency well.At the same time,the global and local information of the legal text as captured by Bi-LSTM and CNN,respectively,is considered to be helpful to improve the representation of the text,as well as the prediction performance of the model.The proposed model was then applied to the similar case matching task of CAIL2019-SCM,and its accuracy is higher than that of the state-of-the-art method.
作者 许梓涛 黄炳森 潘微科 明仲 XU Zitao;HUANG Bingsen;PAN Weike;MING Zhong(National Engineering Laboratory for Big Data System Computing Technology,Shenzhen University,Shenzhen 518060,China;Guangdong Laboratory for Artificial Intelligence and Digital Economy(SZ),Shenzhen University,Shenzhen 518060,China;College of Computer Science and Software Engineering,Shenzhen University,Shenzhen 518060,China)
出处 《太原理工大学学报》 CAS 北大核心 2022年第1期80-88,共9页 Journal of Taiyuan University of Technology
基金 国家自然科学基金资助项目(61836005,62172283)。
关键词 类案匹配 类案推荐 BERT 注意力机制 法律人工智能 Similar case matching Similar case recommendation BERT Attention mechanism Law AI
  • 相关文献

参考文献3

二级参考文献10

共引文献88

同被引文献71

引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部