期刊文献+

子群的核平凡或正规闭包极大的有限p群

Finite p-Groups with a Trivial Core or the Normal Closure Index p for Every Non-normal Abelian Subgroup
下载PDF
导出
摘要 称有限p群G为ACT群,如果对每个交换子群H,其正规核H_(G)=1或H_(G)=H.又称p群G是CC群,如果对每个非正规交换子群H,有H_(G)=1或H^(G)在G中的指数为p.本文分类了ACT群和CC群. A finite p-group G is called an ACT-group if the core H_(G)=1 or H_(G)=H for every abelian subgroup H.And a p-group G is called a CC-group if H_(G)=1 or H_(G)=H^(G) has index p for every non-normal abelian subgroup H.In this paper,the authors classify the ACT-groups and the CC-groups.
作者 赵立博 龚律 郭秀云 ZHAO Libo;GONG Lü;GUO Xiuyun(College of Mathematics,Guangdong University of Education,Guangzhou 510310,China;School of Sciences,Nantong University,Nantong 226019,Jiangsu,China;Department of Mathematics,Shanghai University,Shanghai 200444,China)
出处 《数学年刊(A辑)》 CSCD 北大核心 2021年第4期419-426,共8页 Chinese Annals of Mathematics
基金 国家自然科学基金(No.12071092,No.12101135) 广东省基础研究及应用研究重大项目(No.2017KZDXM058) 广州市科技计划项目(No.201804010088) 广东省普通高校特色创新类项目(No.2020KTSCX093)的资助.
关键词 ACT群 非Dedekind群 有限P群 CC群 ACT-group Non-Dedekind group Finite p-group CC-group
  • 相关文献

参考文献1

二级参考文献7

  • 1Zassenhaus, H. A.: A group-theoretic proof of a theorem of Maclagan-Wedderburn. Proc. Glasgow Math. Assoc., 1, 53-63 (1952)
  • 2Li, S. R.: The structure of NC-groups. J. Algebra, 241, 611-619 (2001)
  • 3Walls, G.: Trivial intersection groups. Archiv der Mathematik, 32, 1-4 (1979)
  • 4Li, S. R.: Finite non-nilpotent groups all of whose second maximal subgroups are TI-subgroups. Royal Irish Academy, 100A(1), 65-71 (2000)
  • 5Robinson, D. J. S.: A Course in the Theory of Groups, Springer-Verlag, Berlin, Heidelberg, New York, 1982
  • 6Huppert, B., Endliche Gruppen I, Springer-Verlag, Berlin, Heidelberg, New York, 1967
  • 7Li, S. R.: On two theorems of finite Solvable groups. Acta Mathematica Sinica, English Series, 21(4), 797-802(2005)

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部