期刊文献+

Ce^(3+)掺杂ZnS量子点的制备和发光性能

Synthesis and Photoluminescence Properties of Ce^(3+)-doped ZnS Quantum Dots
下载PDF
导出
摘要 本文采用低温固相法合成了不同浓度铈离子(Ce^(3+))掺杂的硫化锌(ZnS)量子点,探讨了Ce^(3+)掺杂对ZnS量子点的晶体结构、粒径、形貌以及光致发光性能的影响。结果表明:ZnS:x%Ce^(3+)(x=0,3,6,9)量子点具有立方闪锌矿晶体结构,平均粒径在6.16-9.73 nm之间。紫外-可见漫反射光谱和光致发光光谱结果显示:Ce^(3+)掺杂会降低ZnS量子点的禁带宽度,增加载流子浓度,提高辐射复合几率,进而提高量子点的发光强度。 In this paper,zinc sulphide(ZnS) quantum dots doped with different concentrations of cerium ions(Ce^(3+))were synthesized by a low-temperature solid-phase method,and the effect of Ce^(3+) doping on the crystal structure,particle size,morphology and photoluminescence properties of ZnS quantum dots were investigated.The results showed that the ZnS:x%Ce^(3+)(x=0,3,6,9) quantum dots had cubic sphalerite crystal structures with average particle sizes ranging from 6.16-9.73 nm.The results of ultraviolet visible diffuse reflectance spectroscopy and photoluminescence spectroscopy showed that Ce^(3+) doping decreased the forbidden band width of the ZnS quantum dots,increased the carrier concentration,improved the chance of radiation complexation and thus increased the luminescence intensity of the quantum dots.
作者 雷燕 张广智 陈忠 李思媛 多树旺 Lei Yan;Zhang Guangzhi;Chen zhong;Li Siyuan;Duo Shuwang(School of Materials Science and Electromechanical,Jiangxi Science&Technology Normal University,Nanchang 330013,Jiangxi,P.R.China;Jiangxi Key Laboratory of Material Surface Engineering,Nanchang 330013,Jiangxi,P.R.China)
出处 《江西科技师范大学学报》 2021年第6期26-29,共4页 Journal of Jiangxi Science & Technology Normal University
基金 江西科技师范大学研究生创新专项资金资助项目(YC2019-X15) 江西省大学生创新培养计划项目(S202111318057)。
关键词 ZNS 铈离子 量子点 光致发光 ZnS Ce^(3+) quantum dots photoluminescence
  • 相关文献

参考文献2

二级参考文献38

  • 1何开华,余飞,姬广富,颜其礼,郑澍奎.第一性原理研究ZnS掺V的光学性质和电子结构[J].高压物理学报,2006,20(1):56-60. 被引量:20
  • 2Bevilacqua G, Martinell L, Vogel E E. Jahn-Teller effect and the luminescence spectra of V^2+ in ZnS and ZnSe[J]. Phys. Rev. B, 2002, 66(15) :155338.
  • 3Fazzio M, Caldas J, Zunger A. Many-electron multi- plet effects in the spectra of 3d impurities in hetero- polar semiconductors[J]. Phys. Rev. B, 1984, 30 (6): 3430.
  • 4Biernacki S W, Roussos G, Schulz H J. The lumi-nescence of V^2+ (d^3) and V^2+ (d^3)ions in ZnS and an advanced interpretation of their excitation levels[J]. J. Phys. C:Solid state Phys. ,1988, 21(33) : 5615.
  • 5Karar N, Singh F, Mehta B R, et al. Structure and photolu-minescence studies on ZnS: Mn nanoparticles [J]. J. Appl. Phys., 2004, 95(2) : 656.
  • 6Regan B O,Gratzel M. A low-cast high-efficiency solar cell based on dye-sensitized coll+ oidal TiO2 films [J]. Nature. , 1991, 353(6346):737.
  • 7Colvin V L, Schlamp M C, Alivisatos A P. Light-e- mitting diodes made from cadmium se[enide nano- crystals and asemiconducting polymer[J]. Nature. , 1994, 370(6488): 354.
  • 8Khosravi A A, Deshpande S K, Bhagwat U A,et al. Greenluminescence from copper doped zinc sulphide quantum particles[J]. Appl. Phys. Lett. , 1995,67 (18) : 2702.
  • 9Yan Y F, Li J B, Wei S H, etal. Possible approach to overcome the doping asymmetry in wideband gap semiconductors[J]. Phys. Rev. Lett. , 2007, 98(13) : 135506.
  • 10Yodo T, Tanaka S. Liq-ion implantation into ZnS epitaxial layers grown by metalorganic vapor phase epitaxy[J]. J. Crystal Growth. , 1992, 117 (1-4) : 415.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部