期刊文献+

深度特征融合与重构的微纤维识别算法 被引量:2

Microfiber recognition algorithm based on deep feature fusion and reconstruction
下载PDF
导出
摘要 针对传统卷积神经网络分类识别微纤维存在特征判别不明显的问题,构建了一种深度特征融合与重构的网络对其进行分类与识别。将卷积与深度可分离卷积特征进行融合,加强层间信息交流,提高特征判断指向能力,并在上采样之前分配通道和空间的权重进行特征重构,利用通道注意力与空间注意力相结合的策略使网络在学习的过程中将注意力集中在关键的特征信息处,同时,跳跃连接增加原始特征图,缓解拟合现象,强化微纤维区域关键特征信息,提升微纤维图像识别网络模型的表达能力和学习能力,从而改善微纤维识别效果。实验结果表明,微纤维识别率达到98.77%,通过特征图可视化进一步分析了特征融合与重构的作用。所构建的方法准确率高、泛化能力好,为微纤维分类识别提供了一种新的方案。 In view of the fact that the feature discrimination of the traditional convolutional neural network is not obvious in the microfiber classification and recognition, a deep feature fusion and reconstruction network is constructed to perform classification and reorganization. The convolution and depth separable convolution features are fused to strengthen information exchange between layers,so as to improve feature judgment and pointing ability of the network. The channel and space weights are assigned for feature reconstruction before upsampling. The strategy of combining channel attention with spatial attention is used to enable the network to focus the attention on the key feature information in the learning process. At the same time,jump connections is used to increase the original feature map,alleviate the fitting,strengthen the key feature information of the microfiber area,and improve the expressive ability and learning ability of the microfiber image recognition network model,so as to improve the microfiber recognition effect. The experimental results show that the recognition rate of microfibers can reach 98.77%,the function of feature fusion and reconstruction is further analyzed by feature map visualization,and the constructed method has high accuracy and good generalization ability,which provides a new scheme for microfiber classification and recognition.
作者 吕璐璐 陈树越 王利平 许霞 LÜ Lulu;CHEN Shuyue;WANG Liping;XU Xia(Aliyun School of Big Data,Changzhou University,Changzhou 213164,China;School of Environmental&Safety Engineering,Changzhou University,Changzhou 213164,China)
出处 《现代电子技术》 2022年第1期83-88,共6页 Modern Electronics Technique
基金 国家自然科学基金项目(21607017) 江苏省研究生科研与实践创新计划项目(KYCX19_1770)。
关键词 微纤维识别 特征融合 特征重构 深度学习 深度可分离卷积 权重分配 通道注意力 空间注意力 microfiber recognition feature fusion feature reconstruction deep learning depth separable convolution weight assigning channel attention spatial attention
  • 相关文献

参考文献1

二级参考文献97

  • 1Browne M A, Crump P, Niven S J, et al. Accumulation of microplastic on shorelines woldwide: Sources and sinks. Environ Sci Technol, 2011, 45:9175-9179.
  • 2Cole M, Lindeque P, Halsband C, et al. Microplastics as contaminants in the marine environment: A review. Mar Pollut Bull, 2011, 62: 2588-2597.
  • 3C6zar A, Echevarr/a F, Gonzfilez-Gordillo J I, et al. Plastic debris in the open ocean. Proc Natl Acad Sci USA, 2014, 111:10239-10244.
  • 4Law K L, Mor6t-Ferguson S, Maximenko N A, et al. Plastic accumulation in the North Atlantic subtropical gyre. Science, 2010, 329: 1185-1188.
  • 5Eriksen M, Maximenko N, Thiel M, et al. Plastic pollution in the South Pacific subtropical gyre. Mar Pollut Bull, 2013, 68:71-76.
  • 6Law K L, Mor6t-Ferguson S E, Goodwin D S, et al. Distribution of surface plastic debris in the eastern Pacific Ocean from an 11-year data set. Environ Sci Technol, 2014, 48:4732-4738.
  • 7van Cauwenberghe L, Vanreusel A, Mees J, et al. Microplastic pollution in deep-sea sediments. Environ Pollut, 2013, 182:495-499.
  • 8Zhou P, Huang C, Fang H, et al. The abundance, composition and sources of marine debris in coastal seawaters or beaches around the northern South China Sea (China). Mar Pollut Bull, 2011, 62:1998-2007.
  • 9Thompson R C, Olsen Y, Mitchell R P, et al. Lost at sea: Where is all the plastic? Science, 2004, 304:838.
  • 10Arthur C, Baker J, Bamford H. Proceedings of the International Research Workshop on the Occuranee, Effects, and Fate of Mircroplastic Marine Debris. Department of Commerce, National Oceanic and Atmospheric Administration, Technical Memorandum NOS-OR&R-30, 2009.

共引文献132

同被引文献27

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部