摘要
在电商物流的“最后一公里”配送中,经验丰富的驾驶员(专家)并不总是基于最短路径成本矩阵进行路径规划.对此,提出一种逆向优化方法,通过学习专家的过往路径决策,得到能够代表专家经验的成本矩阵,并应用于路径规划模型求解,使得专家经验能够融入决策算法中.利用机器学习中的乘性权重更新算法实现对专家经验的学习.随机算例和电商实际算例的实验结果证明了方法的有效性.
Generally,experienced drivers or experts do not always follow the shortest path in the last mile delivery of e-commerce.Hence,an inverse optimization approach was proposed to obtain a proper cost matrix by learning from the experts’past experience.Thus,the routing model with respect to the learned cost matrix could provide solutions as good as those given by experts.An algorithm-based multiplicative weights updates algorithm was applied to achieve the experience learning process.The experimental analyses based on the random and real-life instances demonstrate the effectiveness of this approach.
作者
陈禹伊
陈璐
CHEN Yuyi;CHEN Lu(School of Mechanical Engineering,Shanghai Jiao Tong University,Shanghai 200240,China)
出处
《上海交通大学学报》
EI
CAS
CSCD
北大核心
2022年第1期81-88,共8页
Journal of Shanghai Jiaotong University
基金
国家自然科学基金资助项目(51775347)。
关键词
逆向优化
车辆路径规划问题
成本矩阵
经验学习
inverse optimization
vehicle routing problem(VRP)
cost matrix
experience learning