期刊文献+

一种基于多窗宽度STFT的PSWFs信号时频分析方法 被引量:2

A Time-Frequency Analysis Method of PSWFs Based on Multi-window Width STFT
下载PDF
导出
摘要 固定窗宽度的短时傅里叶变换(Short Time Fourier Transform,STFT)时频分辨率是固定的,难以对频率时变的椭圆球面波函数(Prolate Spheroidal Wave Functions,PSWFs)信号的时频分布特性进行全面分析。剖析了窗宽度对不同参数PSWFs信号STFT时频分布的影响,并提出了一种基于多窗宽度STFT的PSWFs信号时频分析方法。该方法基于PSWFs信号阶数、时间带宽积,计算PSWFs信号时域、频域零点间距离,根据零点间距离与STFT时频分辨率的关系,选取多个STFT窗宽度分别对PSWFs信号整体时频分布范围、时间轴方向的时频特征以及频率轴方向的时频特征进行分析。数值分析表明,相对于固定窗宽度的STFT,该方法兼顾时间分辨率与频率分辨率,能够更为全面地分析PSWFs信号整体时频分布范围情况以及时间轴方向与频率轴方向的时频特征情况。 Time-frequency resolution of Short Time Fourier Transform(STFT)with a fixed window width is fixed.And it is difficult to analyze comprehensively the time-frequency distribution characteristics of Prolate Spheroidal Wave Functions(PSWFs)with time-varying frequency.This paper analyzes the influence of different window widths on time-frequency distribution characteristics of different parameters of PSWFs.And a time-frequency analysis method for PSWF signals based on multi-window width STFT is proposed.This method first calculates the distance between time domain and frequency domain zero points of the PSWFs based on the order and time bandwidth product.Then,according to the relationship between the distance and the time-frequency resolution of the STFT,it selects multiple STFT window widths to analyze the overall time-frequency distribution range of the PSWF signal,time-frequency characteristics of the time axis,and time-frequency characteristics of frequency axis.Numerical analysis shows that,compared with the fixed window width STFT,this strategy takes into account time resolution and frequency resolution,and can analyze the overall time-frequency distribution range of the PSWF signal,the time-frequency characteristics of the time axis,and the time-frequency characteristics of frequency axis respectively.
作者 赵乐源 王红星 陆发平 刘传辉 张磊 ZHAO Leyuan;WANG Hongxing;LU Faping;LIU Chuanhui;ZHANG Lei(Aviation Communication Teaching and Research Section,Naval Aviation University,Yantai 264001,China;Key Laboratory on Signal&Information Processing of Shandong Province,Yantai 264001,China)
出处 《无线电通信技术》 2022年第1期165-172,共8页 Radio Communications Technology
基金 山东省“泰山学者”建设工程专项经费基金(ts20081130)。
关键词 时频分析 椭圆球面波函数 短时傅里叶变换 多窗宽度 time-frequency analysis prolate spheroidal wave functions short time fourier transform multi-window width
  • 相关文献

参考文献6

二级参考文献33

  • 1Li-Lian Wang.A Review of Prolate Spheroidal Wave Functions from the Perspective of Spectral Methods[J].Journal of Mathematical Study,2017,50(2):101-143. 被引量:2
  • 2SLEPIAN D, POLLK H O. Prolate Spheroidal Wave Functions, Fourier Analysis, and Uncertainty-I [ R ]. The Bell System Technical Journal, 1961 : 43-46.
  • 3LANDAU H J, POLLAK H O. Prolate Spheroidal Wave Functions, Fourier Analysis, and Uncertainty- III : The Dimension of the Space of Essentially Time- and Band- limited Signals [ R]. The Bell System Technical Journal, 1962 : 1295-1336.
  • 4PARR B, CHO B, and WALLACE K. A Novel Ultra- wideband Pulse Design Algorithm [ J . IEEE Communi- cation Letters, 2003, 7(5): 219-221.
  • 5MASANORI H, JUN H. Spectral Efficiency of Orthogonal Set of Truncated MC-CDMA Signals Using Discrete Pro- late Spheroidal Sequences [ C ]. Proceedings of 2008 IEEE Wireless Communication and Networking Confer- ence : 980-984.
  • 6SACHHI C, ROSSI T, and RUGGOERI M. Efficient Waveform Design for High-bit-rate W-band Satellite Transmissions [ J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47 (2): 974-995.
  • 7HALPERN P. Optimum Finite Duration Nyquist Signals [J]. Communications, IEEE Transactions on Communi- cations, 1979, 27 (6): 884-888.
  • 8MAURO D S, ERNESTIMA C, and TOMMASO R. Waveform Design Solutions for EHF Broadband Satellite Communications [ J]. IEEE Communications Magazine, 2015, 53 (3)- 18-23.
  • 9CHEN C Y, VAIDYANATHAN P P. MIMO Radar Space-time Adaptive Processing Using Prolate SpheroidalWave Function [ J]. IEEE Trand. Signal Process, 2008, 56 (2) : 623-635.
  • 10ZEMEN T, MECKLEN C F. Time-variant Channel Esti- mation Using Discrete Prolate Spheroidal Sequences [ J ]. IEEE Transactions on Signal Processing. 2005, 53 (9) : 3597 -3607.

共引文献32

同被引文献14

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部