期刊文献+

基于加权平均樽海鞘群算法和BP神经网络的COVID-19预测 被引量:4

Prediction of COVID-19 Based on the Weighted Average Salp Swarm Algorithm and BP Neural Network
下载PDF
导出
摘要 新型冠状病毒肺炎以其高传染性和高致病性成为全球关注的问题之一.有效预测COVID-19的累计确诊人数对COVID-19的防控具有重要价值.本文提出加权平均樽海鞘群算法(AVSSA),通过23个基准函数验证了AVSSA的有效性,进而利用AVSSA优化BP神经网络建立预测模型AVSSA-BP,实现COVID-19的预测.实验结果表明预测模型AVSSA-BP有最小的误差和最高的确定性系数,验证了AVSSA-BP的有效性. Corona Virus Disease 2019(COVID-19)is one of the global concerns due to its highly infectious and highly pathogenic coronavirus.It is of great value to effectively predict the cumulative number of confirmed cases of COVID-19 for the prevention and control of COVID-19.In this paper,the weighted average salp swarm algorithm is proposed,named by AVSSA,whose validation is performed by 23 benchmark functions.Then AVSSA is utilized to optimize the parameters of BP neural network to establish the predicted model AVSSA-BP for predicting the COVID-19.The experimental results show that the predicted model AVSSA-BP has the least errors and the highest coefficient of determination.Therefore,the proposed AVSSA is an effective algorithm.
作者 胡红萍 乔世昌 孔慧华 徐乔王 白艳萍 HU Hongping;QIAO Shichang;KONG Huihua;XU Qiaowang;BAI Yanping(School of Science North University of China,Taiyuan Shanxi 030051,China;Linfen Finance Bureau,International Financial Organization Loan Service Center,Linfen Shanxi 041000,China)
出处 《新疆大学学报(自然科学版)(中英文)》 CAS 2022年第1期19-25,共7页 Journal of Xinjiang University(Natural Science Edition in Chinese and English)
基金 山西省回国留学人员科研资助项目(2020-104) 国家自然科学基金(61774137,61971381) 山西省重点研发计划项目(201903D121156).
关键词 新型冠状病毒肺炎 樽海鞘算法 BP神经网络 函数优化 COVID-19预测 Corona Virus Disease 2019 salp swarm algorithm BP neural network function optimization prediction of COVID-19
  • 相关文献

参考文献8

二级参考文献92

共引文献60

同被引文献75

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部