期刊文献+

基于改进PCA的朴素贝叶斯分类算法 被引量:18

Naive Bayes Classification Algorithm Based on Improved PCA
下载PDF
导出
摘要 朴素贝叶斯是一种处理分类问题的常用方法,但它的属性条件独立性假设在实际应用中难以成立,导致其分类性能降低。针对这一问题,文章提出了基于改进PCA的朴素贝叶斯分类算法,该算法通过Pearson和Kendall系数计算出属性间的相关性大小,基于主成分分析筛选出新的属性集,使其尽量满足条件独立性假设,并对新数据集进行朴素贝叶斯分类。实验结果表明,该方法有效地提高了分类准确率。 Naive Bayes is a commonly used method to deal with classifications,but its attribute condition independence assumption is difficult to be established in practical applications,resulting in reduced classification performance.In order to solve this problem,the paper proposes a naive Bayes classification algorithm based on improved PCA.In the proposed algorithm,the paper uses Pearson and Kendall coefficients to calculate the correlation between attributes,and then,based on principal component analysis(PCA),screens new attribute sets to satisfy the conditional independence hypothesis as far as possible.Finally,naive Bayes classification is carried out on the new data sets.The experimental results show that this method effectively improves the classification accuracy.
作者 李思奇 吕王勇 邓柙 陈雯 Li Siqi;Lyu Wangyong;Deng Xia;Chen Wen(School of Mathematical Science,Sichuan Normal University,Chengdu 610068,China;Visual Computing and Virtual Reality Key Laboratory of Sichuan Province,Sichuan Normal University,Chengdu 610068,China)
出处 《统计与决策》 CSSCI 北大核心 2022年第1期34-37,共4页 Statistics & Decision
基金 国家自然科学基金青年项目(11601357) 可视化计算与虚拟现实四川省重点实验室项目(SCVCVR2018.08VS)。
关键词 朴素贝叶斯 相关系数 主成分分析 naive Bayes correlation coefficient principal component analysis(PCA)
  • 相关文献

参考文献9

二级参考文献37

  • 1程泽凯,林士敏,陆玉昌,蒋望东,陆小艺.基于Matlab的贝叶斯分类器实验平台MBNC[J].复旦学报(自然科学版),2004,43(5):729-732. 被引量:27
  • 2张静,王建民,何华灿.基于属性相关性的属性约简新方法[J].计算机工程与应用,2005,41(28):55-57. 被引量:18
  • 3董立岩,刘光远,苑森淼,李永丽,孙铭会.混合式朴素贝叶斯分类模型[J].吉林大学学报(信息科学版),2007,25(1):57-61. 被引量:8
  • 4刘红岩.可扩展的快速分类算法的研究与实现[M].北京:清华大学出版社,2000..
  • 5[1]Friedman N,Geiger D,Goldszmidt M. Bayesian network classifiers. Machine Learning, 1997,29:131~ 163.
  • 6[2]Cooper G. Computational complexity of probabilistic inference using bayesian belief netwoks. Antificial Intelligence, 1990,42: 393 ~ 405.
  • 7[3]Clark P,Niblett T. The CN2 induction algorithm. Machine Learning, 1989,3: 261 ~ 83.
  • 8[4]Kohavi R, Becker B, Sommerfield D. Improving simple Bayes. Proceedings of theEuropean Conference on Machine Learning, 1997,78~ 87.
  • 9[5]Iba W,Thompson K. An analysis of Bayesian classifiers.Proceedings of the 10th National Conference on Artificial Intelligence, 1992,223~228.
  • 10[6]Langley P,Sage S. Induction of selective Bayesian classifiers. Proceedings of the 10th Conference on Uncertainty in Artificial Intelligence, 1994,399~406.

共引文献215

同被引文献211

引证文献18

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部