摘要
以探究群结构为出发点,对2000阶以内的2-正则共轭类长素图对应的有限群进行研究。研究4个顶点的2-正则图以及2个连通分支的2-正则图,其中2个连通分支的2-正则图只有一种双三角形的图结构。对这两类图所对应的有限群结构进行了分析及说明,并利用群同构的相关知识对得出的群结构进行归纳,以及通过GAP研究了相应群的实现问题。
Based on the study of group structure,this paper studies the finite groups corresponding to 2-regular conjugacy graphs in order 2000,including 2-regular graphs of four vertices and 2-regular graphs of two connected componentes.The 2-regular graphs of two connected componentes have only one double-triangle structure.The finite group structure corresponding to these two kinds of graphs is analyzed and explained,and the group structure is summarized by using the relevant knowledge of group isomorphism,and GAP is used to study the realization of the corresponding group.
作者
皇甫莹
何立国
HUANG Fu-ying;HE Li-guo(Department of Mathematics,School of Science,Shenyang University of Technology,Shenyang,Liaoning 110870,China)
出处
《河北北方学院学报(自然科学版)》
2022年第1期1-3,共3页
Journal of Hebei North University:Natural Science Edition
关键词
有限群
共轭类
弗比纽斯群
finite group
conjugacy class
Frobenius group