摘要
目的:设计并实现了一款不依赖网络环境、高精度、低迟延的老年人跌倒检测装置。方法:提出一种网格搜索优化的支持向量机跌倒检测算法(IGS-SVM),该方法首先用支持向量机算法对采集到的数据集进行训练,然后再利用改进的网格搜索寻找模型最优参数,最后将模型配置到树莓派终端进行实时跌倒检测。结果:实验表明本跌倒检测系统的准确率为98.06%、敏感度为96.81%,特异度为98.67%。结论:与传统的简单阈值跌倒检测系统相比,本系统能识别的跌倒动作种类较多且跌倒检测准确率更高。
Aims:This paper aims to design and implement a fall detection device with high precision and low latency which does not rely on the network environment.Methods:An improved grid search method was proposed to optimize the support vector machine algorithm()which was used in the fall detection system.Firstly,the collected fall data was trained with IGS-SVM.Then an improved grid search method was used to find the optimal parameters of the fall detection.Finally,the model was deployed to the Raspberry Pi terminal for real-time fall detection.Results:The experimental results showed that the fall detection accuracy of the system was 98.06%.The sensitivity was 96.81%;and the specificity was 98.67%.Conclusions:Compared with the traditional threshold fall detection system,this fall detection system processes more types of activities and has higher fall detection accuracy.
作者
朱海亮
刘鹏达
李艳丽
徐展翼
潘巨龙
Pi ZHU Hailiang;LIU Pengda;LI Yanli;XU Zhanyi;PAN Julong(College of Information Engineering,China Jiliang University,Hangzhou 310018,China)
出处
《中国计量大学学报》
2021年第4期497-503,共7页
Journal of China University of Metrology
基金
浙江省基础公益研究计划项目(No.LGF21F020017)。
关键词
跌倒检测
树莓派
支持向量机
网格搜索
特征选择
fall detection
Raspberry Pi
support vector machines
grid search
feature selection