期刊文献+

基于树莓派的高精度跌倒检测装置设计与实现

Design and implementation of a high-precision fall detection device based on Raspberry Pi
下载PDF
导出
摘要 目的:设计并实现了一款不依赖网络环境、高精度、低迟延的老年人跌倒检测装置。方法:提出一种网格搜索优化的支持向量机跌倒检测算法(IGS-SVM),该方法首先用支持向量机算法对采集到的数据集进行训练,然后再利用改进的网格搜索寻找模型最优参数,最后将模型配置到树莓派终端进行实时跌倒检测。结果:实验表明本跌倒检测系统的准确率为98.06%、敏感度为96.81%,特异度为98.67%。结论:与传统的简单阈值跌倒检测系统相比,本系统能识别的跌倒动作种类较多且跌倒检测准确率更高。 Aims:This paper aims to design and implement a fall detection device with high precision and low latency which does not rely on the network environment.Methods:An improved grid search method was proposed to optimize the support vector machine algorithm()which was used in the fall detection system.Firstly,the collected fall data was trained with IGS-SVM.Then an improved grid search method was used to find the optimal parameters of the fall detection.Finally,the model was deployed to the Raspberry Pi terminal for real-time fall detection.Results:The experimental results showed that the fall detection accuracy of the system was 98.06%.The sensitivity was 96.81%;and the specificity was 98.67%.Conclusions:Compared with the traditional threshold fall detection system,this fall detection system processes more types of activities and has higher fall detection accuracy.
作者 朱海亮 刘鹏达 李艳丽 徐展翼 潘巨龙 Pi ZHU Hailiang;LIU Pengda;LI Yanli;XU Zhanyi;PAN Julong(College of Information Engineering,China Jiliang University,Hangzhou 310018,China)
出处 《中国计量大学学报》 2021年第4期497-503,共7页 Journal of China University of Metrology
基金 浙江省基础公益研究计划项目(No.LGF21F020017)。
关键词 跌倒检测 树莓派 支持向量机 网格搜索 特征选择 fall detection Raspberry Pi support vector machines grid search feature selection
  • 相关文献

参考文献8

二级参考文献66

  • 1陈欣,杨小兵,姚雨虹.基于BLSTM算法和字词融合的文本情感分类方法[J].中国计量大学学报,2020(2):225-232. 被引量:3
  • 2鲍淑娣,张元亭.远程医疗:穿戴式生物医疗仪器[J].中国医疗器械信息,2004(5):1-3. 被引量:42
  • 3邹焱飚,谢存禧.基于家庭的远程健康监护系统进展[J].计算机工程与应用,2005,41(10):30-34. 被引量:37
  • 4老年人跌倒干预技术指南[S].卫生部疾病预防控制局.2011.
  • 5Vaidehi V, Kirupa Ganapathy, Mohan K, et al. Video Based Automatic Fall Detection Indoor Environment [ C ]//1EEE-Intema- tional Conference on Recent Trends in Information "l'eehnolo:', ICRTIT 2011 ,MIT,Anna University,Chennai. 2011:3-5.
  • 6Chen Diansheng, Feng Wei,Zhang Yu,et al. A Wearable Wireless Fall Detection System with Aceelerators[ C ]//Proeecdings of the 2011 1EEE International Conference on Robotics and Biomimetics. 2011:7-11.
  • 7Hu Xinyao, Qu Xingda. An lndividual-Specifi,: Fall Detection Model Ba.sed on Ihe Statistical Proc'ess Control Chart [ J ]. S',d:ty .cwien:'e, 2014,64:13-21.
  • 8孙新乔.基于三轴加速度传感器的跌到检测技术的研究与应用[D].上海:上海交通大学,2008.
  • 9EFRON B, TIBSHIRANI R J. An introduction to the Bootstrap[M]. Boca Raton: CRC Press, 1994: 17-28.
  • 10BOURKE A, O'BRIEN J V, LYONS G M. Evaluation of a threshold-based tri-axial accelerator fall detection algorithm[J]. Gait and Posture, 2007, 26(2):194-199.

共引文献138

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部