期刊文献+

具有未建模动态和输入饱和约束的纯反馈非线性系统自适应神经网络控制 被引量:2

Adaptive neural control of pure-feedback nonlinear systems withunmodeled dynamics and input saturation
下载PDF
导出
摘要 目的:研究一类具有未建模动态和输入饱和约束的纯反馈非线性系统镇定问题。方法:在控制器设计过程中,引入动态信号处理未建模动态,用径向基函数神经网络逼近未知非线性函数,然后通过Backstepping方法导出自适应神经网络控制律。结果:通过稳定性分析,可得闭环系统所有信号半全局一致终结有界,并由仿真结果可知,系统状态、自适应参数以及未建模动态分别在t≈2 s,t≈4 s,t≈2.2 s时到达原点的小邻域内。结论:本文提出的控制方案证明闭环系统所有信号半全局一致终结有界。 Aims:This paper investigates a stabilization problem for a class of pure-feedback nonlinear systems with unmodeled dynamics and input saturation.Methods:In the controller design procedure,a dynamic signal was introduced to handle the unmodeled dynamics;and radial basis function(RBF)neural networks were used to approximate the unknown nonlinearities.Then an adaptive neural controller was exported via the Backstepping method.Results:By stability analysis,it proved that all the signals in the resulting closed loop systems were semi-globally uniformly ultimately bounded(SGUUB).The simulation results showed that all the states,adaptive parameters and unmodeled dynamics reached the small neighborhood of the origin at t≈2 s,t≈4 s and t≈2.2 s respectively.Conclusions:The proposed control method proves that all the signals in the resulting closed loop systems are SGUUB.
作者 胡汇源 毛骏 HU Huiyuan;MAO Jun(College of Mechanical and Electrical Engineering,China Jiliang University,Hangzhou 310018,China)
出处 《中国计量大学学报》 2021年第4期539-548,共10页 Journal of China University of Metrology
基金 国家自然科学基金项目(No.62103392)。
关键词 未建模动态 输入饱和约束 自适应控制 BACKSTEPPING方法 unmodeled dynamics input saturation adaptive control Backstepping method
  • 相关文献

参考文献3

二级参考文献25

  • 1陈彭年,韩正之,张钟俊.不确定系统的动态输出反馈镇定[J].上海交通大学学报,1996,30(11):62-66. 被引量:1
  • 2Wang L X. Adaptive fuzzy systems and control: Design and stability analysis[M]. Englewood Cliffs: Prentice- Hall, 1994.
  • 3Chen B S, Lee C H, Chang YC. H∞ tracking design of uncertain nonlinear SISO systems: Adaptive fuzzy approach[J]. IEEE Trans on Fuzzy Systems, 1996, 4 (2): 32-43.
  • 4Chai T Y, Tong S C. Fuzzy direct adaptive control for a class of nonlinear systems[J]. Fuzzy Sets and Systems, 1999, 103(3): 379-389.
  • 5Tong S C, Tang J T, Wang T. Fuzzy adaptive control of muhivariable nonlinear systems[J]. Fuzzy Sets and Systems, 2000, 111(2): 153-167.
  • 6Yang Y C. Robust tracking control of nonlinear MIMO systems via fuzzy approaches[J]. Automatica, 2000, 36 (10) : 1535-1545.
  • 7Yang Y S, Zhou C J. Adaptive fuzzy H∞ stabilization for strict-feedback canonical nonlinear systems via backstepping and small-gain approach[J]. IEEE Trans on Fuzzy Systems, 2005, 13(1): 104-114.
  • 8Zhou S S, Feng G, Feng C B. Robust control for a class of uncertain nonlinear systems: Adaptive fuzzy approach based on backstepping[J]. Fuzzy Sets and Systems, 2005, 151(1): 1-20.
  • 9Chen B, Liu X P. Fuzzy approximate disturbance decoupling of MIMO nonlinear systems by backstepping and application to chemical proeesses[J]. IEEE Trans on Fuzzy Systems, 2005, 13(6): 832-847.
  • 10Jiang Z P, Praly L. Design of robust adaptive controllers for nonlinear systems with dynamic uneertainties[J]. Automatica, 1998, 34(7): 825-840.

共引文献18

同被引文献9

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部