期刊文献+

基于CG-yolo的烟火检测 被引量:5

Detection of Fireworks Based on CG-yolo
下载PDF
导出
摘要 针对山火烟雾的检测存在由于监控范围广、发生频率不固定等造成的高成本问题,在边缘计算思维的启发下,提出了一个基于YOLOv5改进的适用于前端布设的轻量级识别网络。该方法针对YOLOv5模型过大的缺陷,通过修改网络结构,将融合了通道注意力机制CoordAttention的Ghostbottleneck模块与YOLOv5结合,提出一种改进型卷积神经网络CG-yolo识别网络。实验结果表明,CG-yolo相对于YOLOv5s算法速度提高了9.5%,查全率提升了1.8%,查准率仅损失1.7%,部署在NVIDIA的Jetson Nano边缘计算平台上时运行速度可以达到13fps,更好地满足了隐患监测的工程实际需求。 Aiming at the high cost problem of mountain fire smoke detection caused by wide monitoring range and irregular oc⁃currence frequency,inspired by the edge computing thinking,this paper proposes a lightweight recognition network based on YO⁃LOv5,which is suitable for front-end layout.In order to solve the problem of too large model of YOLOv5,this paper proposes an im⁃proved convolutional neural network CG-yolo recognition network by modifying the network structure and combining the ghost bottle⁃neck module of coordattention with YOLOv5.The experimental results show that CG-yolo can improve the speed by 9.5%,recall by 1.8%and precision by 1.7%compared with YOLOv5s algorithm.When deployed on NVIDIA's Jetson nano edge computing plat⁃form,the running speed can reach 13fps,which can better meet the practical needs of hidden danger monitoring.
作者 邹辉军 焦良葆 孟琳 张智坚 赵维科 ZOU Huijun;JIAO Liangbao;MENG Lin;ZHANG Zhijian;ZHAO Weike(Institute of Artificial Intelligence Industry Technology,Nanjing Institute of Technology,Nanjing 211167)
出处 《计算机与数字工程》 2022年第1期206-212,共7页 Computer & Digital Engineering
基金 国家自然科学基金青年基金项目(编号:61903183)资助。
关键词 YOLOv5 Ghostbottleneck 通道注意力机制 边缘计算 YOLOv5 Ghostbottleneck attention mechanism edge computing
  • 相关文献

参考文献8

二级参考文献46

共引文献211

同被引文献41

引证文献5

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部