摘要
针对现有教师继续教育的培训效果不佳问题,从教师继续教育模式出发,结合知识图谱技术和DINA模型,设计了一个教师继续教育自适应学习系统。为了提高系统的推荐学习的准确性,采用知识图谱技术表现知识和其相互关系,并加入了知识融合和质量评估模块,保证知识的多样性和质量;提出一种基于DINA模型的教师认知诊断模型,并引入了潜变量和滑动矩阵,使得DINA模型能够实现多级评分,为系统的后续学习提供数据支持。分别对改进后的DINA模型和自适应学习系统进行了仿真验证,仿真结果表明,改进后的DINA模型的诊断结果更准确,教师自适应学习系统能够较大幅度的提高教师的综合素质。
In view of the poor effect of the existing teacher continuing education training,starting from the teacher continuing education model,combined with the knowledge map technology and the DINA model,an adaptive learning system for teacher continuing education is designed.In order to improve the accuracy of the recommended learning of the system,the knowledge graph technology is used to express knowledge and its interrelationships,and knowledge fusion and quality evaluation modules are added to ensure the diversity and quality of knowledge;a teacher cognitive diagnosis based on the DINA model is proposed.The model introduces a pair of latent variables and a sliding matrix,so that the DINA model can achieve multi-level scoring and provide data support for the subsequent learning of the system.The performances of the improved DINA model and the adaptive learning system are verified,respectively.The simulation results show that the improved DINA model has more accurate diagnosis results and the teacher adaptive learning system can greatly improve the comprehensive quality of teachers.
作者
赵宇丹
ZHAO Yudan(Network and Information Center, Guangzhou Open University, Guangzhou 510000, China)
出处
《微型电脑应用》
2022年第1期74-77,共4页
Microcomputer Applications
基金
广州市广播电视大学2019年度科研基金项目(2019KY10)。
关键词
教师继续教育
自适应学习系统
知识图谱
DINA模型
认知诊断
teacher continuing education
adaptive learning system
knowledge graph
DINA model
cognitive diagnosis