期刊文献+

A New Sufficient Degree Condition for a Graphic Sequence to Be Forcibly k-Edge-Connected

原文传递
导出
摘要 A graphic sequence π =(d1, d2,..., dn) is said to be forcibly k-edge-connected if every realization of π is k-edge-connected. In this paper, we obtain a new sufficient degree condition for π to be forcibly k-edgeconnected. We also show that this new sufficient degree condition implies a strongest monotone degree condition for π to be forcibly 2-edge-connected and a conjecture about a strongest monotone degree condition for π to be forcibly 3-edge-connected due to Bauer et al.(Networks, 54(2)(2009) 95-98), and also implies a strongest monotone degree condition for π to be forcibly 4-edge-connected.
机构地区 School of Science
出处 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2022年第1期223-228,共6页 应用数学学报(英文版)
基金 supported by the Hainan Provincial Natural Science Foundation of China(No.2019RC085) the National Natural Science Foundation of China(No.11961019)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部