期刊文献+

基于WDGAN-div的语音增强方法 被引量:4

Speech enhancement method based on WDGAN-div
下载PDF
导出
摘要 针对在低信噪比环境下传统语音增强方法适应性差和增强效果不理想的问题,提出一种基于Wasserstein散度的深度生成对抗网络的语音增强方法。该方法以5个生成器和1个判别器为基础组成深度生成对抗网络,利用5个生成器进行5次增强处理,有效提高对抗网络在低信噪比条件下的增强效果,使用Wasserstein散度优化网络训练,改善传统GAN网络训练过程中存在的训练不稳定等问题,提高深度生成对抗网络训练的稳定性。在低信噪比环境下该方法相比于传统语音增强方法噪声适应性和增强效果都有明显提升。实验结果表明,与原始带噪语音相比,增强语音的分段信噪比平均提高6.1 dB,语音质量感知评估测度和短时客观可懂度分别平均提升28.9%和10.6%。 Aiming at the problem of poor adaptability and unsatisfactory enhancement effects of traditional speech enhancement methods in low signal-to-noise ratio environments,this paper proposes a speech enhancement method based on Wasserstein divergence deep generative adversarial networks.The DGAN is based on five generators and one discriminator.Five generators are used to enhance the noisy speech signal five times,which effectively improves the enhancement effect of the DGAN in low signal-to-noise ratio environments.At the same time,Wasserstein divergence is used to optimize the network training which can solve the problems in the traditional GAN training process and improve the stability of the DGAN training process.Comparing with traditional speech enhancement methods,the noise adaptability and enhancement effect of this method are significantly improved in low signal-to-noise ratio environments.The experimental results show that,compared with the original noisy speech,SegSNR of the enhanced speech is improved by an average of 6.1 dB.PESQ is increased by an average of 28.9% and STOI is increased by an average of 10.6%.
作者 韩鑫怡 张洪德 柳林 柳扬 Han Xinyi;Zhang Hongde;Liu Lin;Liu Yang(Communication Sergeants College,PLA Army Engineering University,Chongqing 400035,China;Hefei Iflytek Digital Technology Limited Company,Hefei 230088,China)
出处 《电子测量技术》 北大核心 2021年第21期64-70,共7页 Electronic Measurement Technology
基金 军内科研项目(LJ20191C070659)资助。
关键词 语音增强 生成对抗网络 深度学习 卷积神经网络 Wasserstein散度 speech enhancement generative adversarial networks deep learning convolutional neural networks Wasserstein divergence
  • 相关文献

同被引文献7

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部