期刊文献+

聚四氟乙烯微孔膜的热处理研究

Study on Heat Treatment of Polytetrafluoroethylene Microporous Membrane
下载PDF
导出
摘要 聚四氟乙烯(PTFE)微孔膜结构独特、性能优异,广泛应用于电缆绝缘层的构建。然而在实际使用中,PTFE微孔膜往往出现塌陷、滑移和热收缩等情况,导致电缆绝缘层性能下降或直接出现绝缘漏洞。研究了热处理时间和温度对PTFE微孔膜结构和性能的影响。采用扫描电镜和失重法分析了热处理过程中微孔膜表面形态的变化和热处理对微孔膜孔隙率的影响;通过差示扫描量热法(DSC)研究了微孔膜结晶度的变化。结果表明:热处理后的聚四氟乙烯微孔膜具有加固的纤维-结节结构单元,最大拉伸强度为22.5 MPa,孔隙率为76.8%~81.2%,热收缩得到控制。 Polytetrafluoroethylene(PTFE)microporous membrane has unique structure and excellent performance.It is widely used in the construction of cable insulation.However,collapsing,slipping and thermal shrinkage of PTFE microporous membrane in practical use have resulted in the decline of cable insulation performance or direct insulation loopholes.The effects of time and temperature of heat treatment on the structure and properties of PTFE microporous membrane were studied.The changes of surface morphology during heat treatment and the effect of heat treatment on the porosity of microporous membrane were analyzed by scanning electron microscopy and weight loss method,the change of crystallinity of microporous membrane was studied by DSC.The results show that the heat-treated PTFE microporous membrane has reinforced fiber nodule structural units.The maximum tensile strength is 22.5 MPa,the porosity is 76.8%〜81.2%,and the thermal shrinkage is controlled.
作者 曹明 陈英波 孙泽龙 CAO Ming;CHEN Yingbo;SUN Zelong(State Key Laboratory of Separation Membrane and Membrane Processes,School of Materials Science and Engineering,Tiangong University,Tianjin 300387,China)
出处 《有机氟工业》 CAS 2021年第4期1-5,共5页 Organo-Fluorine Industry
关键词 热处理 聚四氟乙烯 微孔膜 热收缩 heat treatment polytetrafluoroethylene microporous membrane thermal shrinkage
  • 相关文献

参考文献1

二级参考文献25

  • 1Drobnv, J.G., in "Technology of fluorooolvmers", ed. by Drobnv, J.G., Taylor & Francis Group, Boca Raton, 2009, 19. 30.
  • 2Scheirs, J., in "Modern fluoropolymers: high performance polymers for diverse applications", ed. by Scheirs, J., John Wiley & Sons, New York, 1997, p. 2.
  • 3Iseki, S., Morozumi, M. and Atsuta, S., 1977, U.S. Pat., 4,026,863.
  • 4Martinsa, S.A., Dias, F.W., Nunes, L.S., Borgesa, L.A. and D'Almeidac, J.R., Procedia Eng., 2011, 10:2651.
  • 5Wang, Z.C., Kou, K.C., Liu, Z.W., Zhang, D.N., Bi, H., Chao, M. and Zhao, Q.X., Polym. Adv. Technol., 2012, 23:545.
  • 6Bruk, M.A., High Energ. Chem., 2006, 40:357.
  • 7Khatipov, S.A. and Artamonov, N.A., Russ. J. Gen. Chem., 2009, 79:616.
  • 8Martins, S., Borges, L. and D'Almeida, J.R., Macromol. Syrup., 2011,299/300:92.
  • 9Jamaguchi, D., Katoh, T., Sato, Y., Ikeda, S., Hirose, M., Aoki, Y., Lida, M., Oshima, A., Tabata, Y. and Washio, M., Macromol. Syrup., 2002, 181:201.
  • 10Blanchet, T.A., in "Handbook of thermoplastics", ed. by Olabisi, O., Marcel Dekker, New York, 1997, p. 987.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部