期刊文献+

Measure Complexity and Rigid Systems

原文传递
导出
摘要 In this paper we introduce two metrics:the max metric d_(n,q)and the mean metric d_(n,q).We give an equivalent characterization of rigid measure preserving systems by the two metrics.It turns out that an invariant measureμon a topological dynamical system(X,T)has bounded complexity with respect to d_(n,q)if and only ifμhas bounded complexity with respect to d_(n,q)if and only if(X,B_X,μ,T)is rigid.We also obtain computation formulas of the measure-theoretic entropy of an ergodic measure preserving system(resp.the topological entropy of a topological dynamical system)by the two metrics dn,q and dn,q.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2022年第1期68-84,共17页 数学学报(英文版)
基金 Supported by NNSF of China(Grant Nos.11971455,11801538,11801193,11871188,11731003 and 12090012) supported by STU Scientific Research Foundation for Talents(Grant No.NTF19047)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部