期刊文献+

复杂动态背景下基于群稀疏的运动目标检测方法 被引量:2

Moving Object Detection Method Based on Group Sparseness Under Complex Dynamic Background
下载PDF
导出
摘要 为提高复杂动态背景下运动目标检测精度,基于低秩及稀疏分解理论,本文提出一种基于群稀疏的运动目标检测方法.所提方法将观测视频分解为低秩静态背景,群稀疏前景及动态背景三部分.所提方法首先使用伽马范数近乎无偏近似矩阵秩函数,以解决核范数过度惩罚较大奇异值导致所得最小化问题无法获得最优解进而降低检测性能的问题;其次,为利用前景目标边界先验信息以提升运动目标检测性能,每一帧使用过分割算法生成同性区域以定义群稀疏范数并用于约束前景矩阵;再次,为避免运动目标同时出现在稀疏前景和动态背景中,引入非相干项以提升二者可分性;最后,本文利用交替方向乘子方法(Alternating Direction Method of Multipliers,ADMM)求解所得非凸目标函数.实验结果表明,与现有主流运动目标检测算法相比,复杂动态背景下本文所提方法可较好抑制动态背景从而显著提高复杂运动背景下运动目标检测精度. To improve the accuracy of moving object detection under complex dynamic background,based on the the⁃ory of low-rank and sparse decomposition,a group sparse based moving object detection method is developed.The pro⁃posed method decomposes the observed video into a low-rank static background,a group sparse foreground and a dynamic background.Regarding the problem that the nuclear norm over-penalizing large singular values leads to the optimal solution of the obtained minimization problem cannot be obtained and then the detection performance is decreased,the gamma norm is introduced to acquire almost unbiased approximation of rank function.In order to utilize the object boundary prior to en⁃hance the moving target detection performance,each frame is over-segmented into homogeneous regions which are taken to define the group sparse norm to constrain the foreground matrix.Moreover,to prevent the moving object from appearing in the sparse foreground and dynamic background simultaneously,the incoherence term is introduced to enhance the separabil⁃ity of them.Finally,the obtained non-convex objective function can be solved using the alternating direction multiplier method(ADMM).The experimental results show that,compared with the state-of-the-art moving target detection algo⁃rithms,the developed method can suppress the dynamic background considerably and then improve the accuracy of moving object detection significantly under complex dynamic background.
作者 王洪雁 张海坤 罗宇华 汪祖民 WANG Hong-yan;ZHANG Hai-kun;LUO Yu-hua;WANG Zu-min(School of Information Science and Technology,Zhejiang Sci-Tech University,Hangzhou,Zhejiang 310018,China;College of Information Engineering,Dalian University,Dalian,Liaoning 116622,China;Shanghai Precision Metrology&Test Research Institute,Shanghai 201109,China)
出处 《电子学报》 EI CAS CSCD 北大核心 2021年第12期2330-2338,共9页 Acta Electronica Sinica
基金 国家自然科学基金(No.61301258,No.61871164) 浙江省自然科学基金重点项目(No.LZ21F010002) 中国博士后科学基金资助项目(No.2016M590218)。
关键词 运动目标检测 动态背景 低秩 群稀疏 超像素 moving object detection dynamic background low-rank group sparse superpixel
  • 相关文献

参考文献2

二级参考文献9

  • 1汪源源,孙志民,蔡铮.改进的奇异值分解法估计图像点扩散函数[J].光学精密工程,2006,14(3):520-525. 被引量:14
  • 2James Demmel,W Kahan.Accurate singular values of bidiagonal matrices[J].SIAM J.Sci.Stat.Comput.,1990,11(5):873-912.
  • 3Ming Gu,James Demmel,et al.Efficient Computation of the Singular Value Decomposition with Applications to Least Square Problems.LAPACK Working Note #88. .http://www.netlib.org/lapack/lawnspdf/lawn88.pdf.
  • 4G Golub,W Kahan.Calculating the singular values and pseudo-inverse of a matrix IAM J[J].Num.Anal.Ser.B,1965,2(2):205-224.
  • 5LAPACK routine DBDSQR .URL:http://www.netlib.org/lapack/double/dbdsqr.f.
  • 6LAPACK routine DLASR .http://www.netlib.org/lapack/double/dlasr.f.
  • 7D Pham,S Asano,et al.The design and implementation of a firstgeneration CELL processor .IEEE International Solid-State Circuits Conference .San.Francisco,USA,Feb.2005.184-185.
  • 8王佰玲,田志宏,张永铮.奇异值分解算法优化[J].电子学报,2010,38(10):2234-2239. 被引量:21
  • 9刘瑞祯,谭铁牛.基于奇异值分解的数字图像水印方法[J].电子学报,2001,29(2):168-171. 被引量:217

共引文献23

同被引文献26

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部