摘要
基于非交换群的抗量子密码体制是密码学的一个研究热点,其群的阶在一定程度上保证了求逆运算的困难性.本文对二元生成的传递置换群<g1,g2>的阶这一代数命题进行了研究,给出了传递置换群的充分必要条件,以及二元生成的传递置换群阶的下界估计式.在实例化生成g1,g2使传递置换群<g1,g2>的阶满足相应下界值的过程中,给出了一类特殊n阶轮换表成两个n元置换g1,g2乘积的方法,以及相应的二元生成的传递置换群<g1,g2>的设计算法.最后,阐述了传递置换群在对称密码体制中的应用.
Post quantum cryptography based on non-commutative group is a hot topic in cryptography.The order of the group ensures the difficulty of inverse operation to some extent.We mainly study the algebraic proposition of order of transi⁃tive permutation groups<g1,g2>generated by two elements g1,g2,give a necessary and sufficient conditions of transitive permutation group,and get a lower bound estimation of order of transitive permutation groups generated by two elements.In the process of the instantiation for generating g1,g2 which enables the order of transitive permutation groups<g1,g2>to satis⁃fy the corresponding lower bound value,we give a method expressing a class of special n⁃order cycles as the product of two n⁃ary permutations and a corresponding design algorithm on transitive permutation groups<g1,g2>generated by two ele⁃ments.In the end,this paper describes the application of transitive permutation group in symmetric cryptography.
作者
周琮伟
胡斌
关杰
ZHOU Cong-wei;HU Bin;GUAN Jie(PLA SSF Information Engineering University,Zhengzhou,Henan 450001,China)
出处
《电子学报》
EI
CAS
CSCD
北大核心
2021年第12期2366-2371,共6页
Acta Electronica Sinica
基金
国家自然科学基金(No.61802437,No.61802438)。
关键词
抗量子密码体制
有限群
传递置换群
群阶
元的阶
下界
post quantum cryptography
finite group
transitive permutation group
order of group
element order
lower bound