期刊文献+

基于直觉模糊熵的混合粒子群优化算法 被引量:16

Hybrid Particle Swarm Optimization Algorithm Based on Intuitionistic Fuzzy Entropy
下载PDF
导出
摘要 为了提升粒子群算法的全局寻优与局部精细搜索能力并加快收敛速度,提出了基于直觉模糊熵的混合粒子群优化算法.该算法采用粒子的历史最优解信息构造直觉模糊熵的自适应函数,并将熵值作为扰动因子动态调节惯性权重,同时建立自适应全局最优粒子学习策略对扰动后的粒子进行训练,在保持多样性传播的基础上选择学习对象,使粒子探索更多新区域,实现种群间的协作与并行进化.通过仿真实验,将本文算法与两种衍生算法以及其他改进粒子群算法在11个测试函数上进行比较,结果表明,本算法在求解精度、收敛速度和寻优效率上均有更好表现. In order to improve the global and local fine search capabilities of the particle swarm algorithm and ac⁃celerate the convergence speed,hybrid particle swarm optimization algorithm based on intuitive fuzzy entropy is pro⁃posed.The algorithm constructs an adaptive function of intuitive fuzzy entropy by using the information of the historical optimal solution of particles,and uses the entropy value as a disturbance factor to dynamically adjust the inertia weight.At the same time,it establishes an adaptive global optimal particle learning strategy to train the disturbed particles,chooses learning objects based on maintaining the diversity of propagation,enables the particles to explore more new ar⁃eas,and realizes the cooperation and parallel evolution among populations.Through simulation experiments,the algo⁃rithm is compared with two derivation algorithms and other improved particle swarm optimization algorithms on 11 test functions.The results show that the algorithm performs better in solving accuracy,convergence speed and optimization efficiency.
作者 王毅 李晓梦 耿国华 周琳 段焱中 WANG Yi;LI Xiao-meng;GENG Guo-hua;ZHOU Lin;DUAN Yan-zhong(School of Information Science and Technology,Northwestern University,,Xi’an,Shaanxi 710127,China)
出处 《电子学报》 EI CAS CSCD 北大核心 2021年第12期2381-2389,共9页 Acta Electronica Sinica
基金 国家重点研发计划项目(No.2018YFC1504705) 国家重大仪器专项(No.42027806) 国家重点自然科学基金(No.61731015) 国家自然科学基金(No.61402517) 国家重点实验室基金(No.2016ADL-DW0302) 陕西省自然科学基金项目(No.2018JM6029)。
关键词 直觉模糊熵 扰动因子 粒子群算法 自适应学习 协作与并行进化 intuitionistic fuzzy entropy disturbance factor particle swarm optimization adaptive learning collabo⁃ration and parallel evolution
  • 相关文献

参考文献6

二级参考文献35

  • 1李晓萍.关于三角模的直觉模糊群及其同态像[J].模糊系统与数学,2005,19(1):57-62. 被引量:11
  • 2雷英杰,王宝树,苗启广.直觉模糊关系及其合成运算[J].系统工程理论与实践,2005,25(2):113-118. 被引量:69
  • 3雷英杰,王宝树,路艳丽.基于直觉模糊逻辑的近似推理方法[J].控制与决策,2006,21(3):305-310. 被引量:65
  • 4Zadeh L A. Fuzzy sets[J]. Information and Control, 1965, 8(3): 338-353.
  • 5Atanassov K. Intuitionistic fuzzy sets[J]. Fuzzy Sets and Systems, 1986, 20(1):87-96.
  • 6Atanassov K. More on intuitionistic fuzzy sets[J]. Fuzzy Sets and Systems, 1989, 33(1) : 37-46.
  • 7Atanassov K. New operations defined over the intuitionistic fuzzy sets[J]. Fuzzy Sets and Systems, 1994, 61(2):137-142.
  • 8Lei Y J, Wang B S. Study on the control course of ANFIS based aircraft auto-landing[J]. J of Systems Engineering and Electronics, 2005, 16(3) : 583-587.
  • 9Burillo P, Bustince H. Entropy on intuitionistic fuzzy sets and on interval-valued fuzzy sets[J]. Fuzzy Sets and Systems, 1996, 78(3):305-316.
  • 10Eulalia Szmidt, Janusz Kacprzyk. Entropy for intuitionistic fuzzy sets[J]. Fuzzy Sets and Systems, 2001, 118(3):467-477.

共引文献126

同被引文献189

引证文献16

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部