摘要
研究了一个指数型非线性随机差分方程组,并考虑了双随机因素的扰动,利用平衡点的平移变换、Jaccobi线性化、Lyapunov函数法及稳定性理论等得到该模型平衡解渐近均方稳定和依概率稳定的充分条件,并用数值仿真说明了所得结论的正确性。
In this paper,asymptotic behavior of a class of exponential type system of difference equations is investigated,taking the random perturbations of doubly stochastic factors into account.Using Jaccobi linearization,Lyapunov function method and stability theory,the sufficient conditions are obtained for stability in probability of both equilibriums of the model.Finally,the theoretical results are supported with numerical simulations.
作者
佘智凤
廖新元
陈沙沙
金薇
SHE Zhifeng;LIAO Xinyuan;CHEN Shasha;JIN Wei(School of Mathematics and Physics, University of South China, Hengyang, Hunan 421001, China)
出处
《南华大学学报(自然科学版)》
2021年第6期54-59,共6页
Journal of University of South China:Science and Technology
关键词
指数型差分方程
随机干扰
LYAPUNOV函数
渐近均方稳定
依概率
exponential difference equation
stochastic perturbations
Lyapunov functional method
asymptotic mean square stability
stability in probability