期刊文献+

群稀疏高斯洛伦兹混合先验超分辨率重建 被引量:3

Gauss-Lorenz hybrid prior super resolution reconstruction with mixed sparse representation
下载PDF
导出
摘要 为了得到置信度更高的超分辨率先验模型,实现重建结果在噪声和细节之间的平衡,建立了基于混合稀疏表达框架下的高斯⎯洛伦兹混合先验模型。研究了该先验模型在超分算法中的应用优势和具体的应用方案。首先,根据先验信息的类型介绍了一些超分辨率算法的优势和问题。接着,提出对图像不同分量的统计特点进行单独建模的应用方法。然后,在分析了混合稀疏框架、高斯吉布斯先验和洛伦兹先验的基础上,说明了基于群稀疏框架下的高斯⎯洛伦兹混合先验的超分辨率算法。最后,介绍了具体实现环节和最终迭代方案。实验结果表明,本文基本完成了在重建过程中保持细节的同时抑制噪声的改进目标,可以用于更多复杂环境的超分辨率重建要求。 In order to obtain a super-resolution prior model with higher confidence and balance the reconstructed results between noise and details,this paper establishes a Gauss-Lorenz hybrid prior model based on the mixed sparse representation framework.This prior model's advantages and specific application schemes are studied.Firstly,according to the type of prior information,the advantages and problems of some traditional algorithms are introduced.Next,the statistical characteristics of different components of the image are modeled separately.Then,based on the analysis of the mixed sparse framework,the Gauss-Gibbs prior and the Lorenz prior,the super-resolution algorithm based on the Gauss-Lorenz hybrid prior under the group sparse framework is illustrated.Finally,the implementation and the final iteration scheme are introduced.The aim of noise suppression while maintaining details in the reconstruction process has been completed,which can be used for in more complex en-vironments with super-resolution resconstruction.
作者 马子杰 赵玺竣 任国强 雷涛 杨虎 刘盾 Ma Zijie;Zhao Xijun;Ren Guoqiang;Lei Tao;Yang Hu;Liu Dun(Institute of Optics and Electronics,Chinese Academy of Sciences,Chengdu,Sichuan 610209,China;University of Chinese Academy of Sciences,Beijing 100049,China)
出处 《光电工程》 CAS CSCD 北大核心 2021年第11期50-61,共12页 Opto-Electronic Engineering
基金 国家重点研发计划资助项目(2016YFB0500200) 国家自然科学基金资助项目(61905254)。
关键词 超分辨率算法 先验模型 高斯-洛伦兹 混合稀疏表达 super-resolution algorithm prior model Gauss-Lorenz model mixed sparse representation
  • 相关文献

参考文献7

二级参考文献26

  • 1Nguyen N,Milanfar P,Golub G.A computationally efficient superresolution image reconstruction algorithm. IEEE Transactions on Image Processing . 2001
  • 2Freeman WT,Jones TR,Pasztor EC.Example-based super-resolution. IEEE Computer Graphics and Applications . 2002
  • 3Bishop C M,Blake A,Marthi B.Super-resolution Enhancement of Video. International Conference onArtificial Intelligence and Statistics . 2003
  • 4Lee E S,Kang M.Regularized adaptive high-resolution image reconstructionconsidering inaccurate sub-pixel registration. IEEE Trans.Actions on ImageProcessing . 2003
  • 5Rajan D,Chaudhuri S.Generalized interpolation and its ap-plication in super-resolution imaging. Image and Vision Computing . 2001
  • 6Chantas G K,Galat sanos N P,Woods N A.Super-reso-lution based on fast registration and maximum a posteri-ori reconstruction. IEEE Trans on Image Process-ing . 2007
  • 7Ogawa T,Haseyama M.Semantic image retrieval basedon POCS algorithm using kernel PCA and its perform-ance verification. ISCE’’09,IEEE 13th Interna-tioinal Symposium on Consumer Electronics . 2009
  • 8Zhang Fan,Zhu Qi-dan.Super-resolution image recon-struction for omni-vision based on POCS. CCDC’’09,Proceedings of the 21st Annual International Confer-ence on Chinese Control and Decision Conference . 2009
  • 9ROBINSON D,MILANFAR P.Fundamental perform-ance limits in image registration. IEEE Transactions on Image Processing . 2004
  • 10Candocia F M,Principe J C.Super-resolution of imagesbased on local correlations. IEEE Transactions on Neural Networks . 1999

共引文献53

同被引文献23

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部