期刊文献+

高冲击载荷作用下平面式电涡流阻尼器特性数值模拟研究

Numerical simulation for characteristics of planar eddy current damper under high impact load
下载PDF
导出
摘要 为探究平面式电涡流阻尼器在冲击环境中的应用特点,开展了高冲击载荷作用下平面式电涡流阻尼器响应特性数值模拟研究。基于ANSYS Maxwell电磁学有限元软件建立平面式电涡流阻尼器二维数值仿真模型,分析了永磁体和磁靴结构尺寸、导电层和导磁层厚度以及气隙间距对电磁阻尼力的影响。研究结果表明:平面式电涡流阻尼器能够满足安全制动某型发射高冲击载荷,在高速阶段会出现阻尼削弱现象。当永磁体厚度由10 mm增加到50 mm时,磁阻尼力明显增加,且永磁体厚度为30 mm时其质量利用率将达到最大;有无导磁板对磁阻尼力的影响较大,但导磁板厚度超过2 mm后磁阻尼力趋于饱和;导电板厚度从0增加到0.6 mm时,磁阻尼力成比例增大,但当导体板厚度由0.8 mm增加到2 mm时,高速阶段的磁阻尼削弱现象明显增大;研究结果可以为平面式电涡流阻尼在冲击环境中的进一步应用提供支撑。 Here,to explore application characteristics of planar eddy current damper in impact environment,numerical simulation for response characteristics of planar eddy current damper under high impact load was performed.Based on the electromagnetic finite element software ANSYS Maxwell,a 2-D numerical simulation model of planar eddy current damper was established to analyze effects of structural sizes of permanent magnet and magnetic shoe,thicknesses of conductive layer and magnetic layer as well as air gap spacing on electromagnetic damping force.The study results showed that the planar eddy current damper can satisfy safely braking a certain type to launch high impact load,and damping weakening phenomenon can appear in high-speed stage;when thickness of permanent magnet increases from 10mm to 50mm,magneto-resistive force increases obviously,and permanent magnet’s mass utilization rate can reach the maximum when its thickness is 30mm;the presence or absence of magnetic plate has a larger influence on magneto-resistive force,but magneto-resistive force tends to be saturated after thickness of magnetic plate exceeds 2 mm;when thickness of conductive plate increases from 0 to 0.6 mm,magneto-resistive force increases proportionally,but when thickness of conductive plate increases from 0.8 mm to 2 mm,magnetic damping weakening phenomenon increases obviously in high-speed stage;the study results can provide a support for further application of planar eddy current damper in impact environment.
作者 黄通 高钦和 刘志浩 刘大伟 HUANG Tong;GAO Qinhe;LIU Zhihao;LIU Dawei(College of Missile Engineering,Rocket Force University of Engineering,Xi’an 710025,China)
出处 《振动与冲击》 EI CSCD 北大核心 2022年第1期305-310,共6页 Journal of Vibration and Shock
基金 国家自然科学基金(51905541) 陕西自然科学基础研究计划(2020JQ487) 陕西省高校科协青年人才托举计划(20190412)。
关键词 高冲击载荷 平面式 数值模拟 阻力特性 影响参数 high impact load planar numerical simulation resistance characteristic influence parameter
  • 相关文献

参考文献11

二级参考文献99

共引文献109

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部