期刊文献+

基于多尺度分组卷积ResNet34的岩石识别模型 被引量:4

Rock recognition based on multi-scale grouped convolution ResNet34
下载PDF
导出
摘要 岩石分类有效提升地质风险评估的效率,为提高岩石粒度特征的识别精度,提出基于多尺度分组卷积ResNet34网络的岩石识别方法,在残差模块中添加多尺度分组卷积和空洞卷积,提升网络的特征表达能力.采用多尺度分组卷积特征提取的方式,将特征图按通道方向分为四部分,分别采用不同大小的卷积核进行并行运算和拼接,在更细粒度上提取岩石特征,同时减少了模型训练参数,进而采取空洞卷积增加感受野大小,提升岩石粒度识别精度.实验表明,该方法不仅有效提升了网络训练的收敛速度,而且在2021年第九届“泰迪杯”数据挖掘挑战赛七类岩石数据集上识别准确率达到97.6%. Rock classification effectively improves the efficiency of geological risk assessment.In order to improve the recognition accuracy of rock particle size characteristics,a rock identification method based on the multi-scale grouped convolution ResNet34 network is proposed,and multi-scale grouped convolution and cavity convolution are added to the residual module to improve the feature expression ability of the network.Using multi-scale grouped convolution feature extraction,the feature map is divided into four parts according to the channel direction,and convolution kernels of different sizes are used for parallel operation and splicing,and rock features are extracted at a finer granularity.At the same time,the model training parameters are reduced;then the cavity convolution is used to increase the size of the receptive field and improve the accuracy of rock particle size recognition.Experiments show that this method not only effectively improves the convergence speed of network training,but also achieves a recognition accuracy of 97.6%on the seven types of rocks for the 9th"Teddy Cup"Data Mining Challenge in 2021.
作者 符甲鑫 汪琦 FU Jia-xin;WANG Qi(School of Science, Hohai University, Nanjing 211100, China)
机构地区 河海大学理学院
出处 《陕西科技大学学报》 北大核心 2022年第1期167-173,共7页 Journal of Shaanxi University of Science & Technology
基金 国家自然科学基金项目(61773152)。
关键词 ResNet34 多尺度分组卷积 空洞卷积 细粒度 岩石识别 ResNet34 multi-scale grouped convolution dilated convolution fine-grained rock recognition
  • 相关文献

参考文献4

二级参考文献61

  • 1张旗,金惟俊,李承东,王元龙.再论花岗岩按照Sr-Yb的分类:标志[J].岩石学报,2010,26(4):985-1015. 被引量:159
  • 2张旗,金惟俊,李承东,王元龙.三论花岗岩按照Sr-Yb的分类:应用[J].岩石学报,2010,26(12):3431-3455. 被引量:49
  • 3Chen Tsewei,Chen Yiling,Chien Shaoyi.Fast image segmentation based on K-means clustering with histograms in HSV color space.Multimedia Signal Processing,2008 ; 10:322-325.
  • 4Zhou Yong,Shi Haibin.Adaptive K-means clustering for color image segmentation.Advances in Information Sciences and Service Sciences (AISS),2011 ;3(10):216-223.
  • 5Chitade A Z,Katiyar DR S K.Colour based image segementition using K-means clustering.International Journal of Engineering Science and Technology,2010;2(10):5319-5325.
  • 6Yang Qing,Guo Jingran,Zhang Donggxu.Fault diagnosis based on fuzzy C-means algorithm of the optimal number of clusters and probabilistic neural netWork.International Journal of Intelligent Engineering and Systems,2011 ;2(4):51-59.
  • 7Breiman, L., Friedman, J.H., Olshen, R.A., Stone, CJ., 1984. Classification and Regression Trees. Wadsworth, California, USA.
  • 8Casali, G., Vallebuona, C., Perez, G., Gonzalez, R., Vargas, L., 2000. Lithological composition and ore grindability sensors, based on image analysis. In: Pro- ceedings of the XXI International Mineral Processing Congress, pp. 9-16.
  • 9Rome, A1. Chatterjee, S., 2013. Vision-based rock-type classification of limestone using multi- class support vector machine. Applied Intelligence 39, 14-27.
  • 10Chatterjee, S., Bhattacherjee, A., 2011. Genetic algorithms for feature selection of image analysis-based quality monitoring model: an application to an iron mine. Engineering Applications of Artificial Intelligence 24 (S), 786-795.

共引文献139

同被引文献44

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部