期刊文献+

CRISPR/Cas系统发展及其应用进展

Development and application progress of CRISPR/Cas system
下载PDF
导出
摘要 CRISPR/Cas系统作为当前最热门的编辑技术与其它基因编辑技术相比,具有操作简单、效率高等优点。目前该系统已被广泛应用于植物基因组编辑之中,为植物基因功能研究和遗传改良提供了重要的技术支持。本文首先介绍了CRISPR/Cas系统的发展历程,随后从两方面阐述了CRISPR/Cas系统的优化,最后着重介绍了CRISPR/Cas系统在植物中的发展方向及应用前景,以期为后续相关的遗传改良等研究提供参考。 As the most popular editing technology,CRISPR/Cas system has the advantages of simple operation and high efficiency compared with other gene editing technologies.At present,the system has been widely used in plant genome editing,providing important technical support for plant gene function research and crop genetic improvement.This review firstly introduced the development process of the CRISPR/Cas system,then explained the optimization of the CRISPR/Cas system from two aspects,and finally focused on the development direction and application prospects of the CRISPR/Cas system in plants.It is hoped to provide reference for follow-up related genetic improvement research.
作者 张月婷 符潮 刘新亮 戴小英 谢雄雄 汪信东 Zhang Yueting;Fu Chao;Liu Xinliang;Dai Xiaoying;Xie Xiongxiong;Wang Xindong(Jiangxi Academy of Forestry,Camphor Engineering and Technology Research Centre for National Forestry and Grassland Administration,Nanchang Jiangxi 330013,China)
出处 《南方林业科学》 2021年第6期69-74,共6页 South China Forestry Science
基金 江西省青年科学基金资助项目(项目编号:20202ACBL215003) 江西省林业科学院公益项目(项目编号:2017512702)。
关键词 基因编辑技术 CRISPR/Cas系统 发展历程 遗传改良 gene editing technology CRISPR/Cas system development process genetic improvement
  • 相关文献

参考文献11

二级参考文献127

  • 1胡培松,唐绍清,魏兴华.泰国香米事件及启示[J].中国稻米,2006,12(4):1-2. 被引量:14
  • 2Kim YG, Cha J, Chandrasegaran S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc NatlAcadSci USA, 1996, 93(3): 1156-1160.
  • 3Klug A. The discovery of zinc fingers and their development for practical applications in gene regulation and genome manipulation. Q Rev Biophys, 2010, 43(1): 1-21.
  • 4Miller J, McLachlan AD, Klug A. Repetitive zinc-binding domains in the protein transcription factor IlIA from Xenopus oocytes. EMBOJ, 1985, 4(6): 1609-1614.
  • 5Wolfe SA, Nekludova L, Pabo CO. DNA recognition by Cys2His2 zinc finger proteins. Annu Rev Biophys Biomol Struct, 2000, 29(6): 183-212.
  • 6Porteus MH, Carroll D. Gene targeting using zinc finger nucleases. Nat Biotechnol, 2005, 23(8): 967-973.
  • 7Pavletich NP, Pabo CO. Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 A. Science, 1991, 252(5007): 809 817.
  • 8Fu FL, Sander JD, Maeder M, Thibodeau-Beganny S, Joung JK, Dobbs D, Miller L, Voytas DF. Zinc Finger Database (ZiFDB): a repository for information on C2H2 zinc fingers and engineered zinc-finger arrays. Nucleic Acids Res, 2009, 37(Suppl 1): D279-D283.
  • 9Jayakanthan M, Muthukumaran J, Chandrasekar S, Chawla K, Punetha A, Sundar D. ZifBASE: a database of zinc finger proteins and associated resources. BMC Genomics, 2009, 10(1): 421.
  • 10Wright DA, Thibodeau-Beganny S, Sander JD, Winfrey R J, Hirsh AS, Eichtinger M, Fu FL, Porteus MH, Dobbs D, Voytas DF, Joung JK. Standardized reagents and protocols for engineering zinc finger nucleases by modular assembly. Nat Protoc, 2006, 1(3): 1637-1652.

共引文献262

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部