期刊文献+

基于加权相似性的MCCNN训练集选择方法

MCCNN training set selection method based on weighted similarity
下载PDF
导出
摘要 为解决MCCNN网络立体匹配的训练数据集选择问题,研究一种基于相关性比较、余弦相似性和结构相似性的加权度量选择方法,通过实验确定三者的加权系数,使用三者的加权值衡量训练集与待匹配图像数据分布的互相似性、训练集本身的自相似性,以互相似性和自相似性加和值最高的对应数据集作为选择的训练集。通过InStereo2k图像和实拍图像实验,验证了该方法的有效性。 To solve the problem of selecting the training data set for the stereo matching of the MCCNN network,a weighted metric selection method based on correlation comparison,cosine similarity and structural similarity was proposed.The weighting coefficients of the three were determined through experiments.The weighted values of the three were used to measure the mu-tual similarity between the training set and the data distribution of the image to be matched,as well as the self-similarity of the training set itself.The corresponding data set with the highest sum of mutual similarity and self-similarity was selected as the training set.The effectiveness of the method was verified through experiments with InStereo2k data sets and real pictures.
作者 范聪聪 葛宝瑧 范怡萍 FAN Cong-cong;GE Bao-zhen;FAN Yi-ping(School of Precision Instruments and Opto-Electronics Engineering,Tianjin University,Tianjin 300072,China)
出处 《计算机工程与设计》 北大核心 2022年第1期110-119,共10页 Computer Engineering and Design
基金 国家自然科学基金重点基金项目(61535008)。
关键词 相似性度量 加权法 数据集 立体匹配网络 深度学习 similarity measurement weighting method data set stereo matching network deep learning
  • 相关文献

参考文献3

二级参考文献17

  • 1Khan R A, Meyer A, Konik H, et al. Framework ibr Reliable, Real-Time Facial Expression Recognition for l.ow Resolution Ima- ges. Pattern Recognition I.etters, 2013, 34(10) : 1159-1168.
  • 2Zavaschi T H H, Britto Jr A S, Oliveira L E S, et al. Fusion of Feature Sets and Classifiers for Facial Expression Recognition. Expert Systems with Applications, 2013, 40 (2) : 646-655.
  • 3Asthana A, de la Hunty M, Dhall A, et al. Facial Performance Transfer via Deformable Models and Parametric Correspondence. IEEE Trans on Visualization and Computer Graphics, 2012, 18 (9): 1511-1519.
  • 4Wan S H, Aggarwal J K. Spontaneous Facial Expression Recogni- tion: A Robust Metric Learning Approach. Pattern Recognition, 2014, 47(5) : 1859-18681.
  • 5Sankar A, Shechtman E, et al. Being John Malkovieh// Proc of the 11 th European Conference on Com- puter Vision. Heraklion, Greece, 2010 : 341-353.
  • 6Dhall A, Asthana A, Goecke R. A SSIM-Based Approach for Finding Similar Facial Expressions // Proc of the IEEE Interna- tional Conference on Automatic Face and Gesture Recognition and Workshops. Santa Barbara, USA, 2011 : 815-820.
  • 7Domaika F, Moujahid A, Raducanu B. Facial Expression Recogni-tion Using Tracked Facial Actions: Classifier Performance Analy- sis. Engineering Applications of Artificial Intelligence, 2013, 26 ( 1 ): 467-477.
  • 8Stegmann M B. The AAM-API: An Open Source Active Appear- ance Model Implementation//Proe of the 6th International Confer- ence on Medical Image Computing and Computer-Assisted Interven- tion. Montreal, Canada, 2003:951-952.
  • 9Hu Y X, Zeng Z H, Yin L J, et al. A Study of Non-frontal-view Facial Expressions Recognition // Proc of the 19th International Conference on Pattern Recognition. Tampa, USA, 2008:1-4.
  • 10Frank W. Facial Expressions and Emotion Database. [ EB/OL ]. [2013-12-01 ] . http://cotesys, mmk. e-technik, tu-muenchen. de/isg/content/feed-database.

共引文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部