期刊文献+

基于词典分类器的细粒度机构名识别

Fine-grained organizational entity recognition based on dictionary classifier
下载PDF
导出
摘要 为提高机构名识别精度,满足关系抽取等下游任务的需求,提出分阶段细粒度命名实体识别思想。利用Bert-BiLSTM-CRF模型对机构名进行粗粒度识别,将机构名视为短文本,采用Bert-CNN对构建的机构名词典训练细粒度分类模型,获取机构名的细粒度标签。实验结果表明,提出的分阶段方法在细粒度机构名识别上F1值最佳达到了0.8117,远超词典匹配方法。 To improve the accuracy of organizational entity recognition and satisfy the requirements of downstream tasks such as relation extraction,an idea of fine-grained named entity recognition in stages was proposed.Bert-BiLSTM(bi-directional long short-term memory)-CRF(conditional random fields)was used to identify the coarse-grained organizational entities.Organizational entities were regarded as short texts and the fine-grained classifier with the constructed dictionary of organizational entities was trained using Bert-CNN(convolutional neural networks).The fine-grained labels of organizational entities were obtained.Experimental results show that the optimal F1 of multi-stages method proposed reaches 0.8117,which is far more than the dictionary matching method.
作者 李磊 王路路 吐尔根·依布拉音 姜丽婷 艾山·吾买尔 LI Lei;WANG Lu-lu;Turgun Yibulayin;JIANG Li-ting;Aishan Wumaier(School of Information Science and Engineering,Xinjiang University,Urumqi 830046,China)
出处 《计算机工程与设计》 北大核心 2022年第1期245-251,共7页 Computer Engineering and Design
基金 国家重点研发子课题基金项目(2017YFB1002103) 国家自然科学基金项目(61762084) 新疆维吾尔自治区重点实验室开放课题基金项目(2018D04019) 国家语委基金项目(ZDI135-54)。
关键词 粗粒度 命名实体识别 细粒度 机构名识别 分类器 coarse-grained named entity recognition fine-grained organizational entity recognition classifier
  • 相关文献

参考文献4

二级参考文献26

共引文献120

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部