摘要
由于煤矿井下环境复杂、刮板输送机功能繁琐等多重因素影响,刮板输送机故障诊断耗时长、困难大。基于此,设计了基于STM32单片机和RBF神经网络算法的多种传感器、多通道传输、抗干扰能力强的刮板输送机检测及故障诊断系统,通过地面及井下系统配合完成电机、减速器、链轮组、链条等多部件故障状态识别,提高故障处置效率,有效增强煤矿生产安全水平。
Due to multiple factors such as complex-underground environment of coal mine and cumbersome function of scraper conveyor,the fault diagnosis of scraper conveyor is time-consuming and difficult.Based on this,a scraper conveyor detection and fault diagnosis system with multiple sensors,multi-channel transmission and strong anti-interference capability based-on STM32 microcontroller and RBF neural network algorithm is designed to complete multi-part fault status identification of motor,reducer,sprocket set,chain,etc.through the cooperation of surface and underground systems to improve fault disposal efficiency and efiectively enhance the safety level of coal mine production.
作者
刘亚琪
Liu Yaqi(Jinhua Gong Mine,Jinneng Holding Coal Group,Datong Shanxi 037016)
出处
《机械管理开发》
2022年第1期126-128,共3页
Mechanical Management and Development