摘要
在经典波动力学理论基础上,结合复变函数方法和表面弹性理论,研究了变密度介质中嵌入纳米孔洞对剪切波的散射问题,根据波动理论定义入射波和散射波的位移势,结合广义Young-Laplace边界条件构造含有未知系数的应力场,并利用数学软件对未知系数进行求解。研究了密度二维变化时不同条件下非均匀介质中纳米孔洞对波的散射影响,通过具体算例数值模拟,分别探讨了变密度、表面效应和波数对圆形孔洞周边的应力影响,结果表明这些对孔洞周边的影响显著。
Based on the classic wave mechanics theory,and through combining with the complex variables functions and surface elastic theory,the study analyzes the problem of scattering of shear waves embedded with nanopores in variable density media,and defines displacement potentials of incident and scattered waves according to wave theory.Through combining with generalized Young-Laplace boundary conditions,stress field with unknown coefficients is constructed,and the unknown coefficient is solved through the utilization of mathematics software.The study explores the influence of nanopores on wave scattering in inhomogeneous medium under different conditions when the density changes in two-dimension.Through specific numerical modeling,the study explores the influence of variable density,surface effect and wave number on the stress around circular holes.This indicates that these factors have significant effect on circular holes around.
作者
雷东侠
尚童
欧志英
Lei Dongxia;Shang Tong;Ou Zhiying(School of Science, Lanzhou University of Technology, Lanzhou 730050, China)
出处
《黑龙江科学》
2022年第2期19-21,共3页
Heilongjiang Science
基金
国家自然科学基金(11862014)的支持
关键词
纳米孔洞
密度二维变化
表面效应
动应力集中因子
Nanopores
Density two-dimensional change
Surface effect
Dynamical stress concentration factor